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ABSTRACT

The objectives of the investigation described herein are two fold:
(1) to establish a method of designing three-dimensional (non-axisym-
metric) thrust nozzle contours for maximum thrust with prescribed inlet
conditions and constraint relastions, and (2) to illustrate the methodology
for the optimum design by considering two examples.

Design procedures for meximizing the thrust of axisymmetric rocket
motor nozzles under various isoparametric conditions have been developed
within the last decade and are widely used currently. It is well known,
however, that rocket motor nozzles may be required to have flow geometries
that cannot be adequately approximated by a simple two-dimensional or
axisymmetric shape. Hence, the need has been felt for a method of
designing optimum three-dimensional nozzles. Assuming an irrotational,
homentropic flow (of a perfect gas) with given initial conditions, the
following constraint relations are specified: (a) the shape of the
nozzle exit, (b) the variation of nozzle length with respect to the
angular coordinate (r, @, z coordinates), and (c) a streamline which
coincides with the z-axis in the flow regime.

The general problem of optimizing the contour of a three-dimen-
sional nozzle is formulated by postulating & three-dimensional control

surface which is constrained to pass through the exit contour of the
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nozzle and intersect the core region (kernel) but is otherwise an
arbitrary three-dimensional surface.

The standard (r, ¢, z)-cylindrical coordinate system is used to
describe the problem. The axial thrust and mass flow rate are written
as integrals over the control surface. The solution to the optimization
problem is obtained by applying the techniques of the calculus of
variations. The variational integral is formed by summing the integral
equation for axial thrust, the integral equation for the mass flow rate
times a Lagrange multiplier, and the irrotationality condition times
another lagrange multiplier. The constraints on length and nozzle exit
geometry are included by substitution in the variational integral. From
the variational problem a set of four design equations which relate the
flow variables on the control surface is derived.

The design equations together with the boundary conditions in a
particular problem, are sufficient to locate the control surface and
determine the flow properties on it.

In order to ensure that a shock free flow field exists which will
produce the optimum flow on the control surface and also match the flow
in the kernel, it is shown that the control surface is a characteristic
surface; that is, the control surface is shown to be oriented in a
characteristic direction and the compatibility equations for a character-
istic surface in three~dimensional flow are shown to apply on the control

surface.
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The methodology for the application of the solution of the optimi-

zation problem is discussed with reference to two examples as follows:

l.

a nozzle in which the initial and ambient conditions and the
length of the nozzle are prescribed; the shape of the nozzle

at the exit plane is required to be an ellipse of given
eccentricity but with variable area; and the exit contour

is on a plane normal tc a given axis;

a nozzle in which the irnitial and ambient conditions are
prescribed (in particular tne throat section is required to

be circular), and the nozzle length and shape at the exit plane
are the same as that obtained by arbitrarily truncating an

optimized axisymmetric nozzle.



1. INTRODUCTION

One of the interesting problems in fluid dynamics is the optimiza-
tion of flow geometries under specified constraints. Such problems
arise in the determination of the shapes of wing bodies and ships, of
the moving parts of a turbo-machine,and of the reaction nozzle of a
rocket motor. In general, the problem of optimization should include
the properties of the medium of flow, both with respect to the equation
of state and the stress~-strain relationships. Even when the medium of
flow is assumed to obey the perfect gas law and all viscous effects are
neglected, the optimization of a flow, three-dimensional in character,
presents many interesting features. The research reported here pertains
to the optimization of the geometry of a thrust nozzle (in a rocket
motor) under the assumption that the medium of flow is an inviscid
mixture of gases obeying the perfect gas lawv.

Several different types of constreints may be considered for the
thrust nozzle, such as (a) geometrical constraints, (b) weight-based
constraints, or (c) constraints based upon the loss of momentum or energy
in the flow. The objective of the investigation¥* described herein is
the establishment of a method for designing three-dimensional (non-
axisymmetric) thrust nozzle contours for maximum thrust with prescribed
inlet conditions and specified constraints on the overall length and

exit geometry.

* Thompson, H. D., Design of Optimized Three-Dimensional Thrust Nozzle
Contours," Ph.D. Thesis, Purdue University, June 1965.




Furthermore, it may be pointed out at the outset that the procedure
for a complete design will involve the determination of the flow geometry
in (a) the subsonic region, (b) the transonic region, and (c) the super-
sonic region. The research under report is concerned exclusively with
the optimization of the flow geometry in the supersonic region of the
thrust nozzle.

* * *

The thrust of a propulsion device operating with chemical propel-
lants is developed primarily by imperting momentum to the products of
combustion by discharging them through the nozzle. The gases are
sccelerated from low subsonic velocities in the converging (initial)
portion of the nozzle; they pess from subsonic to supersonic veloclties
in the minimum area section (throat)*, and are further accelerated in the
diverging portion of the nozzle to achieve the required supersonic
velocity at the exit. An analysis of the performance of a thrust nozzle
or the development of a method of design requires the determination of
the flow field in the nozzle and demands a separate method of snalysis
for each of the three sections of the nozzle, namely the subsonic con-
verging section, the transonic (throat) section, and the supersonic
diverging section.

The total thrust achieved by the nozzle depends upon the rate of

mass flow through the nozzle, the velocity (in the axial direction) of

* The nozzle throat, as defined herein, is the intersection of the nozzle
contour with the plane which is normal to the general direction of flow
and at the point of minimum cross sectional area of the nozzle. The
plane through the nozzle throat is used as a fixed reference for the
coordinate system and hence for measuring the nozzle length.




the combustion geses at the nozzle exit, and the pressure difference
between the exhaust flow and the ambient conditions. The specific
impulse of & nozzle is the total axial thrust divided by the weight
flow rate of propellant and is & measure of the nozzle efficiency.

One of the objectives of a nozzle designer is to obtain the maxiwmum
thrust from a nozzle under a given set of operating conditions. In
general, this is accomplished by increasing the exhaust velocity in the
desired direction of thrust and by decreasing the difference in pressure
between the combustion gases at the nozzle exit and the amblent value.

The mass flow rate through the nozzle is determined by the throat
area and the operating conditions in the combustion chamber. For a
given set of operating conditions in the combustion chamber and a fixed
throat area, the flow geometry or the design of the subsonic portion of
8 nozzle contour may influence only the flow up to the throat section
and willl have no effect on the flow field beyond the throat. For this
reason the performance of a thrust nozzle may be considered to depend
almost entirely on the design of the supersonic diverging portion of the
nozzle contour.

A complete analysis of the flow in & nozzle should account for
(a) the state of the medium of flow, (b) the stress-strain relations
governing the flow, and (c) the mass, momentum, and energy transfer
processes associated with the flow. While the changes in performance
from introducirg the effects of such parameters may prove to be of great
importance in practice, ilnitial comparisons of gross performance

parameters can be obtained by assuming an adiabatic expansion of an



inviscid, ideal gas with a constant ratio of specific heats; that is, 1t

is both thermally and calorically perfect. The value of the thrust
obtained from any of the flow geometries considered under such approxi-
mations may be vastly different from the actual value obtained in practice.

For a fixed set of operating conditions (initial gas conditions and
the ambient conditions), the best performance in terms of thrust in a
given direction is obtailned from a nozzle which isentropically expands
the (combustion) gases to a unif;rm (supersonic) speed et the exit plane
of the nozzlé under the conditions that (a) the entire stream is oriented
at the exit plane in the desired direction of the thrust, and (b) the
pressure at the exit plane is no different from the ambient pressure.
Such a nozzle contour is referred to as a perfect nozzle. When the
entire flow is axisymmetric, it i1s clear that a perfect nozzle with
the aforementioned constraints provides the maximum thrust.

Two-dimensional perfect nozzles are ﬁidely used in wind tunnel
construction. However, perfect nozzles tend to become very long; con-
sequently, they are not employed as thrust nozzles because of their
excessive length and weight.

On the other hand, in a practical rocket motor several other
constraints may be imposed while still requiring the maximum value of
thrust to be generated in & particular direction. Then the conditions
specified for determining the flow geometry of the nozzle become
(a) the initial conditions of flow, say at the throat section, (b) the

ambient conditions, and (c) the other conditions constraining the flow.




Those other constraining conditions may be related to (i) the geometry of
the flow, such as the length* of the nozzle, the shape of the throat,
and/or the shape of the &xit plane, (ii) the surface area of the flow
geometry—governing the heat transfer (or momentum loss), and/or
(iii) some other conditions related to an aspect of the fabrication or
overasll-system design objectives. In short, a number of elternative con-
ditions may be imposed as constraints in the design of a thrust nozzle;
in each case, the objective of the designer may remain the same, namely
the determination of the nozzle contour which will yield the best value
of thrust and satisfy all of the constraint copnditions imposed. The
problem of optimizetion arises precisely in that situation; for a given
set of initial and constraining conditions, the flow geometry which
ylelds the maximum value of one performance parameter (for example, the
thrust) is to be determined. Mathematically, the determination of such
&8 flow geometry requires showing that such & geometry exists and is
unique for a given set of initial and constraint conditions.

The application of optimization techniques to the ‘design of rocket
motor nozzle contours to obtain the maximum thrust under various con-
straining conditions has been the subject of considerable interest

over the past decadelna**. All of those analyses pertain to axisymmetric

* The length of the nozzle is the axial distance between the fixed reference
plane at the nozzle throat and a point on the exit boundary of the nozzle;
therefore unless the exit boundary of the nozzle is on & plane perallel
to the fixed reference plane (at the throat) the length will be different
at various points on the exit contour. For the general three-dimensional
nozzle Bontour the length may thus be a function of the angular coordinate,
namely 0.

¥% Superscripted numerals refer to references listed in the Bibliography.



flow geometries, and the methods developed are widely used currently for
the practical design of thrust nozzles. It is becoming increasingly
apparent, however, that thrust nozzles may be required to have flow
geometries that cannot be approximated adequately by a simple two-

dimensional or axisymmetric shape9.

1.1 Survey of Literature

In the formulationl’2

of the optimization problem, the operating
conditions in the combustion chamber, the subsonic and the transonic
parts of the nozzle contour and the mass flow rate have been considered
to be known and to remain fixed. One is therefore concerned with the
determination of the supersonic portion of the contour that will maximize
the thrust and satisfy the constraints imposed. The most common con-
straint is ordinarily related to the length of the nozzle.

The original formulation of the problem is due to Guderley and
thtschl and utilizes the optimization methods based upon the calculus
of variations. The essential elements of the problem formulation are
best explained by referring to the axisymmetric nozzle contour illustrated
in Fig. 1l.1. In addition to the subsonic contour A T, an initial expeansion
arc T B B' is considered to be given. The flow field in the core region
of the nozzle, T B C D O, denoted as the kernel, is then uniquely
determined by the fixed initial conditions in the throat region and the
prescribed initial expansion contour. The essence of the formulation
then consists in postulating and introducing a control surface, C E, in

order to determine the axial momentum and the other quantities of interest.
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The particular control surface which, along with the kernel, constitutes
the finsl solution is that control surface across which totael axial
momentum is the maximum,subject to the constraints that are imposed.
Guderley and Hantschl imposed the constraints that

(a) the mass flow rate through the nozzle remains a given and

constant value,
(b) the length of the nozzle may not vary but remeins at a given
value, and

(c¢) the control surface is a characteristic surface.
Condition (c) in reelity imposes two constraints on the control surface;
namely,that it be oriented in the characteristic direction and that the
compatibility equations for a characteristic be satisfied on the control
surface. The optimization problem is formulated using Iagrange multi=
pliers to impose the constraint conditions. By employing the calculus
of variations, a set of design equations is obtained from which the
control surface may be located and the flow properties determined on it.
It then only remains to find the flow between the kernel and the control
surface. The details of the procedure required for laying out that
portion of the flow are given In Ref. 5.

Sometime later Rao2 discovered that it is not necessary to impose

specifically the constraint that the control surface be a characteristic

* Guderley and Hantschl imposed the condition that the control surface be

_ a characteristic surface to ensure that the derived flow variasbles on
the control surface could be matched to the flow in the kermel. Although
this appears to be the most plausible method of formulating the problem
it has proven to be less desirable than the formnulation due to RaoZ.




surface. Instead, by allowing the control surface direction to be
arbitrary, the resulting design equations could, in fact; be proved
to require the control surface to be a characteristic surface. Thus,
1t has been established that once a control surface is postulated it
will be uniquely determined &s a characteristic surface when the con-
straints are appropriately chosen. The choice of the constraining
relations is critical in the formuletion and solution of the problem.

Both Guderley and Hantschl and Rao2 pose the problem of obtaining
the flow geometry which will produce the maximum value of momentum in
the desired direction of thrust (exial direction for an axisymmetric
nozzle) under the constraints that (a) the entire flow geometry is
axisymmetric, (b) the axial length of the region of flow over which the
acceleration occurs is fixed, and (c) the initial conditions, including
the mass flux, are fixed. However; each of the authors presents a
different formulation of the problem and as a result they cbtain 4if-
ferent forms of the solution which are not clearly demonstrated to be
equivalent to each other.

An excellent comparison of the two methods of posing the same

3 who also derived the axisym-

problem has been presented by Guderley
metric design equations for the non-homentropic flow case (i.e., the
case of constant total enthalpy and constant entropy on & streamline
but with alloweble variations in entropy between streamlines).
It may be pointed out that the design equations derived by Ra02
are considerately simpler when compared to those derived by Guderley
and thtschl. The relative simplicity of Rao's solution for the optimized

nozzle design has resulted in the wide practical use of the method.
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A procedure for optimizing the thrust of axisymmetric nozzles
subject to other geometric constraint conditions, such as a prescribed
surface area, has been developed by Guderley and Armitage6. The pro-
cedure is again based on the optimization methods utilizing the calculus
of varistions but the problem is formulated in a different manner so as
to make the nozzle boundary the control surface.

A more extensive discussion on the methods of design of axisym-

metric nozzles is presented in Ref. 5.

1.2 Three~Dimensional Nozzle Flow

A general three-dimensional rocket motor nozzle is completely
determined when the following data are prescribed:
(1) initial conditioms,
(1i) total thrust,
(i1i) nozzle shape in the transverse plane,
(iv) variation of the shape in the transverse plane along the
meridional axis,
(v) exit flow conditions, and
(vi) the shape of at least one streamline.
Such data have to be given before & nozzle contour can be determined
by analytical means.
For the purposes of analysis of the performance of a rocket motor
nozzle, the following data are required:
(1) 1initial conditions and

(i1i) complete nozzle contour.
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In any case; it 1s first necessary to set up the governing equations
for the state and the motion of the gas.

The procedure for the computation of a three-dimensional supersonic
flow utilizing the method of characteristics is still under development.
Several alternative procedures and their relative merits are discussed
in Ref. 10, wherein two of the five recommended methods are presented
in some desail.

The procedure for the optimum design of a three~dimensional thrust
nozzle contour can be considered as a generalization of the method
developed by Guderley and Han‘cschl and by Re,o2 for the optimum design of
axisymmetric thrust nozzles. However the problem of three~dimensional
nozzle flows is considerably complicated by the following features:

l. a homentropic* flow is not necessarily an irrotational flow;

2. the control surface which is postulated for the purpose of
determining the flow perameters is required to match the flow
properties both on the boundary of the kermel (which it inter-
sects) and on the exit contour of the nozzle (with which it
coincides);

3. no streamline may be present in the flow regime which can be
described simply with reference to a chosen coordinete system;

k. no planes of symmetry may be present in the flow regime and there
may be no axis of symmetry at the "throat” or -the "exit"
boundary; and

5. +the thrust may be commted with respect to an arbitrary direction.

* The term homentropic refers to a flow with constant specific entropy
throughout the physical domain of flow. See Ref. 11, page 3.
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If one considers an axisymmetric nozzle and examines the five
aforementioned complicating features, it 1s obvious that they correspond
to the following features pertaining to the axisymmetric case:

l. & homentropic flow is necessarily irrotational;

2. the control surface is axisymmetric thus requiring that the

exit plane of the nozzle as well as the plane of intersection
of the control surface with the kernel be planes normal to the
axis of the nozzle. Further, the velocity and flow properties
on the control surface as well as the length of the nozzle are
independent of the angular coordinate;

3. the axis of the nozzle is a streamline;

k. not only are there planes of symmetry, but there is axisl

symmetry by definition throughout the flow regime; and

5. while the thrust may be calculated with respect to an arbitrary

direction, the axial direction is generally the natural choilce.
It is clear, therefore, that both in the formulation of the problem and
in the development of a methodology for the application of the solution
the three-dimensional nozzle will present entirely new features. Never-
theless, the general principles involved are the same as those employed

for axisymmetric flows.

1.3 The Optimization Problem

The formulation of the optimum design problem consists of con-
sidering the flow across & three-dimensional control surface which is
constrained to pass through the nozzle exit contour and to intersect

the three-dimensional kernel, but otherwise,it is an arbitrary three-
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dimensional surface. As in the design of optimized axisymmetric nozzle
contours, the emphasis is on the supersonic portion of the contour.
Consequently, the operating conditions in the combustion chamber as well
as the contours of the subsonic, transonic, and initial expansion portions
of the nozzle wall are determined by design criteria other than thrust
optimization and are considered to be known for purposes of thrust
maximization. In addition, the flow field in the kernel (which is
uniquely determined by those initial conditions and the prescribed por-
tion of the nozzle contour) is considered to be known in the optimiza-
tion problem.

The formulation of the problem is restricted by the following'

assumptions:

l. +the flow is homentropic and irrotational throughout the flow
regime;

2. the flow regime includes cne straight streamline which coincides
with the coordinate direction representing the general direction
of flow; and

3. the desired direction of maximum thrust is the direction repre-
sented by the straight streamline mentioned under 2 in the
foregoing.

The constraints imposed are the following:

1. the initial conditions at the throat section are given in a
region vhere at every point the flow is supersomic; so also
are the ambient conditicns given;

2. the mass flux through the control surface is given and may not

be varied;
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3. the length of the nozzle is gilven as a specific function of

the anguler coordinate and may not be varied; and

k. +the control surface is a continuous smooth surface.

It may be stated that the three basic restrictions and the four
constraint relations are the only limitations under which the optimi-
zation problem is formulated.

The flow on the control surface is described in terms of five
dependent variables V, 9, Y , aand @ .* The variasbles, V, 9, and l}}
describe the velocity vector, V, and the variables o and (3 define the
direction of the unit normal to the control surface. The axial thrust
and mass flow rate are expressed in terms of V, 6, W 3 andp as
integral equations over the control surface. The irrotationality
condition on the control surface is derived in terms of a partial
differential equation involving derivatives of V, 9, and L,V » The
condition for maximum thrust, with a fixed mass flow and with ir-
rotational flow, then requires that the variationel integral, I, be
stationary where the variational integral is formed using lagrange
multipliers to form & linear combination of the axial thrust, mass flow
rate, and irrotationality constraint. The conditions imposed on the
length and exit shape of the nozzle contour are imposed by substituting
into the variational integral.

In order to solve the problem, additional relations are required in
in the form of boundary conditions. Such boundary conditions will-

pertain to some or all of the following:

* All symbols are defined later in Chapter 2 and an alphabetical listing
of all symbols used with definition for each is included as Appendix A.
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1. the functional relation between the length of the nozzle and
the angular coordinate;

2. ‘the shape of the physical boundaries at the throat section and
at the exit plane of the nozzle;

3. the existence of planes of symmetry in the flow regime; and

k. +the functional relation governing the variation of the velocity

with the angular coordinate at the exit plane of the nozzle.

1.4 The Qutline of the Thesis

As mentioned earlier, the determination of the optimized contour of
a thrust nozzle involves essentially the supersonic portion of the nozzle.
In the absence of viscous effects and under the assumption that the flow
medium is 8 thermally and calorically perfect gas the problem of optimi-
zation becomes the determination of the flow contours for cbtaining the
maximom value of momentum in a particular direction, within a certain
length of the flow regime, and with given initial and ambient conditions.

The coordinate system employed for the formulation of the problem
and other significant features related to the flow are presented in
Chapter 2.

Chapter 3 is devoted to the formulation of the problem under the
restrictions of homentropic, irrotational flow in which one stream-
line coincides with the coordinate representing the general direction
of flow and the length of the nczzle is given as a function of the

angular coordinate. The sclution of the problem is based upon the



16

optimization procedures of the calculus of variations and results in a
set of seven design equations which apply on a postulated control sur-
face. The proof that such a control surface is a physical and uniquely-
determined surface is obtained by showing that the control surface
complies with all of the conditions required on a characteristic surface.

The seven design equations can be reduced to a set of four partial
differential equations. In order to solve them one needs boundary con-
ditions. Such boundary conditions may be obtained in many different
forms and in relation to different geometric and flow parameters.

In Chapter 4, a set of boundary conditions is discussed which are
related to (a) the initial flow conditions at the throat section of the
nozzle, (b) the length of the nozzle as a function of the angular co-
ordinate (in the particular example cited independent of the angular
coordinate) and, (c) the minimum number of conditions for defining the
variation of velocity on a prescribed shape at the exit plane of the
nozzle. It should be emphasized that if the length of the nozzle 1is
prescribed, the only boundery conditions that may be prescribed in
relation to the geometry of the nozzle are the shapes of the nozzle at
the throat section and at the exit plane of the nozzle. One then
obtains the location and shape of the control surface which, along
with the kernel of the flow, determines the entire flow field.

The methodology for the application of the solution of the cptimiza-
tion problem is discussed in Chapter 5 with reference to two examples as

follows:
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1. a nozzle in which the initial and ambient conditions and the
length of the nozzle are prescribed; the shape of the nozzle
at the exit plene is required to be an ellipse of given ec-
centricity but with variable area; and the exit contour is on
8 plane normal to a given axis;

2. a nozzle in which the initial and ambient conditions are
prescribed; in particular the throat section is required to
be circular; and the nozzle length and shape at the exit plane
are the same as that obtained by arbitrarily truncating an
optimized exisymmetric nozzle.

According to the theory there are ten boundary conditions to be
satisfied considering both the inner boundary at the intersection of
the control surface with the kernel and the outer boundary at the
nozzle exit; however, the manner in which the boundary conditions are
prescribed and the fact that each boundary is a curve on which the
problem variables may not be constant mekes it extremely difficult to
ascertain just what constitutes one boundary condition. It is therefore
necessary to rely on the formalism of the theory tc provide the needed
number of boundary conditions. The number of iteration procedures for
solving a problem are inseparably connected to the manner in which the
boundary conditions are prescribed and the number of boundary equations
which are known or =ach boundary. The procedure for iteration in dis-
cussed briefly in Chapter 5.

The determination of the final methodology which may prove suitable

under given conditions is an open problem, both in regard to finding a
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computational procedure as well as in regard to obtaining the desired
degree of convergence of numerical solutions; nevertheless, it may be
concluded that the existence of an optimized solution for a three-
dimensional internal flow under appropriate constraints has been
demonstrated and the broad outlines of the methodology required for

the application of the solution have been established.
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2. FORMUIATION OF THE MATHEMATICAL PROBLEM

The optimum design of a thrust nozzle has usually been divided into
three separate, though admittedly not independent, problems of design
related to

l. the subsonic converging contdui',

2. the transonic contour near the throat, and

3. the supersonic diverging contour.

In the region employed for matching the transonic contoﬁi- with the
supersonic contour of the nozzle ’ the iﬁitial ekya.nsion coﬁtour’ also
needs to be determined. The initial state of the gas a.nd the wall
contour for the subsonic, transonic , and initial éxpansion regions of
the nozzle are to be determined on thé basis of design criteria other
than thrust optimization (maxﬁnizaﬁ;ion) , and, cansequéntly, will be
treated as known qua.ntit.tés with respect to the thruét maximization
pro'blem."' Thue, the problem of optimum design of & nozzle to be discussed
in this research report concerns only the determination of the super~
sonic portion of the nozzle contour beyond the initial expension contour.

Figure 2.1 is a schematic representation of a general three-dimen=-
sionai nozzle contour. The zome of influence of the initial expansion
contour of the nozzle is denoted as the kermel and is the portion of the
supersonlc flow for which the floﬁ varisbles are c§mp1etely determined

by the initiasl conditions and the prescribed subsomnic, transonic and
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initial expension contour. Tt is assumed that the flow varisbles in the
kernel are determinsble by applying the three-dimensional method of
characteristicslo and that the flow variables on the outer surface of
the kernel, which are necessary for further analysis, are available,
Consequently, the initial flow conditions mst be specified as part of
the problem and thus will act as constraints on the mathematical
optimization problem.

In this report the only initial conditions which will be considered
are the conditions of inviscid irrotationmal flow of a perfect gas with
constant total enthalpy. Thus the constraints imposed by the initisl
conditions are constant entropy throughout the flow, constant total
enthalpy and the irrotationality condition for the vorticity component

along a streamline. These constraints are discussed in more detail in

-Section 2.2.3.

In order to formulate the optimization problem mathematically, a
control surface, also illustrated in Fig. 2.1, 1is introduced. The
control surface 1s constrained to pass through the nozzle exit contour
and to intersect the kernmel but is otherwise an arbitrary, three-
dimensional surface. The axial momentum and mass flow rate are expressed
as integral equations over the control surfece. Ore of the essential
steps in the solution of the mathematical problem is the establishment
of the uniquely determinable character of the control surface. That is
done by showing thet the control surface is a chara.eteristic surface.
For convenience, therefore, a summary of the relationships governing
characteristic surfaces in three-dimensional flow 1s included in

Section 2.1.3 a8 part of the discussion of nomenclature.
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In Section 2.2 the mathematical relationships pertaining to the
control surface are deduced. The transformation relations which are
employed to transform from the control surface to the two-dimensional
(r, §)-plane and the reverse transformations are also derived therein.
In Section 2.3 the variational integral is formed and the variational
relations are derived. Section 2.4 summarizes the overall mathematical

problem.

2.1 Nomenclature

For convenience the symbols employed are listed alphabeticelly in
Appendix A. All symbols are defined when first introduced but will be
without definition thereafter. Standard notation has been employed as

far as possible.

2.1.1 Coordinate System

The standard (r, #, 2)-cylindrical coordinate system illustrated
in Fig. 2.2, is used throughout as the spatial reference. The z-axis
is oriented along the straight nozzle axis, the r-coordinate is
measured radially from the z-axis to the r-axis.

The velocity vector, V, at any point is defined in terms of its
megnitude, V, and the spherical angles ¢ and ¢’ as 1llustrated in
Fig. 2.3. The angle 6 is measured counterclockwise from z toW;.

The angle ¢ 1is measured in the (r, f)-plane, counterclockwise from
r to the projection of V on the (r, P)-plane. The direction cosines

of the velocity vector with respect to the (r, §, z)-coordinates are
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V. = gin 6 cos

= gin 6 s .
Vg in @ sin (2.1)
Vz = cos 0

The control surface is defined in terms of the unit normal to the
surface, 2. The direction of 1 is determined by the angles and@
as illustrated in Fig. 2.4. The angle ﬁ is measured counterclockwise
from the z-axis to_g, and the angle a is measured in the (r, ¢)-plane s
counterclockwise from r to the projection of 'i? on the (r, ¢)—plane.

Thus, the directlion cosines of 7 are

n
r

ng = - sin@ sin (2.2)
n, cos F

2.1.2 Pressure, Density, Entropy and Vorticity Relationships

- sine cos O

1]

The problem is limited to the inviscid, irrotational, homentropic
flow of a perfect gas. Using the perfect gas relatiomship, viz.
P=pRT (2.3)

the equation of state for a homentropic flow is

= constant (2.4)

ke
o
et fo”

wvhere P is the pressure, T is the temperature; p is the density, R is
the gas constant, ¥ is the specific heat ratio, and the subscript o

denotes initial (total) conditions.
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FIGURE 2.4

COMPONENTS OF THE NORMAL TO
CONTROL SURFACE, N
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The sound speed, c, at any point is defined by the relation

e? - (@Cf)s (2.5)

where the subscript s denotes a constant entropy process. Thus, from

egns, (2.4) and (2.5)

2 B ¥p
() - 2F (2.6)
“h g 8]
Bernoulli's equation can be written
2
2 V2 c
c o _
se1'% = ¥-I ° constant (2.7)

Consequently, the pressure, density, and sound speed are functions of V
and the initial conditions so that the following differential relation-

ships are valid:

P = = pV av (2.8)
dp = - 232-’ av (2.9)
[
T=-1,V
de = = (-—-2—-) S av (2.10)

For future use, the Mach angle, u, is defined by the equation

Bo= sin~t % = sint % (2.11)

where M is the Mach number. Hence the differential du can be written in

terms of the differential 4V es

- (K;zl b sin® 1)

V sin pcos u

dp =

av (2.12)

In the formulation of the optimization problem the homentropic flow

constraint is imposed by eliminating the pressure and density derivatives
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by substitution from egns. (2.8) and (2.9). In a general three-dimen-
sional flow, however, & constant entropy does not assure an irrotational
flow*. That is, the entropy gradients in a flow are related only to the
components of vorticity which are normsl to the streamline, and, there-
fore, a vorticity vector cen exist along a streamline even in a homen-
tropic flow.12

—

The vortex vector,(L), is defined as the curl of the velocity

vector. Hence,
—

W = V xV = Curl V. (2.13)

In terms of the cylindrical coordinates r, ¢, and z the components of in

are
wr v ;:'g; 8) _ v Sinaz sin¥) (2.14)

w¢ _ (v sinag cos ) v cgi@) (2.15)
Z=%[§(eria:esinW)_ a(eriiag cosy/)] (2.16)

For irrotational flow all three components of the vorticity vector must

be identically zero.

2.1.3 Three-Dimensiocnal Characteristic Relationships
One of the essential steps in the solution cof the mathematical
problem is the establishment of the uniquely determinsble character of
the control surface. The proof of such uniqueness rests here on showing
that the control surface is & characteristic surface. Accordingly, the
terminology and equations governing cheracteristic surfacesare summarized

here for future reference.

* The vorticity vector is related to the entropy gradient by Crocco's
equation which for a steady, three-dimensional flow with constant total
enthalpy is Vx W =-T V s. If W is zero then Y s must be_zero,
but 1If Y s is zero then either W 1is zero or V is parallel towW . In
two~dimensional or axisymmetric flows the latter possibility, namely'Tf
parallel to & , does not exist.
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The governing partial differential equations for supersonic flow are
of hyperbolic type. It is a feature of hyperbolic equations that they
possess unique directions called characteristic directions. The solution
of hyperbolic partial differential equations utilizing the special pro-
perties of the equations along characteristic directions 1s commonly
referred to as the method of characteristics.

The application of the method of characteristics to three-dimensional
flow has recelved considersble attention over the past decade. The basic
concepts and the fundamental equatlons required for applying the method
of characteristics to compute the three-dimensional flow in nozzles are
given in detail in Ref. 10. No attempt will be made here to duplicate
that work, but it may be pointed out that the application of the tech-
niques of the method of characteristics to three-dimensional supersonic
flow fields is an essential part of the overall design problem. Consider-
able care is required in the choice of the technique, particularly from

the point of view of convergence and non-occurrence of singularitles.

Terminology: Each point Q in a supersonic flow field is associated
with a Mach conoid or characteristic conoid as illustrated in Fig. 2.5.
The right circular cone formed by the tangents to the Mach conoid st Q
is the characteristic cone or Mach cone. The rays of the characteristic
cone make the angle p with the velocity vector when p is the Mach angle
defined by eqn. (2.11).

Associated with each point on a non-characteristic line such as
T T' (illustrated in Fig. 2.6) is a characteristic conoid. The two

surfaces tangent to the characteristic conoids and containing the line
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T 7' are characteristic surfaces. The intersection of a characteristic
conoid and a characteristic surface is a bicharacteristic curve. The
relationships between blcharacteristics, characteristic conoids,

characteristic cones, and characteristic surfaces are illustrated in

Fige 2460

Characteristic Surfaces: In a three-dimensional supersonic flow

the characteristic surfaces are of fundamental importance since the
governing equations for the three-dimensional flow reduce to two equa~
fions on each characteristic surface. For a surface to be a character=
:I.sti‘c sﬁi‘face it is necessary and sufficient that

(a) the surface be oriented in a characteristic direction, and

(b) the so-called compatibility equatioms apply on the surface.

Characteristic Directions: A surface 1s oriented in & character-

istic direction if 1t is tangent to the characteristic conoids
assoclated with each point on the surface. Thus, If at every point on
a surface the velocity vector, TI‘, and the unit normal to the surface, Tf,

satlsfy the relation

—

V",n =% sin (2.17)

the surface is oriented in a characteristic dilrection.

Compatibility Equations: The compatibility equations associated
with the method of characteristics for supersonic flow are the governing
equations (i.e., the equations of conservation of mass, momentum and

energy) for the flow transformed to a coordinate system on & character—



32

istic surface. The compatibility equations (for several coordinate
systems) are derived in Ref. 10.

Figure 2.7 illustrates the coordinate relationships at a point in
a supersonic, three-dimensional flow. The direction L is along a
bicharacteristic. The direction N is normal to L and in the tangent
plane to the characteristic cone at the point Q. Consequently, the
(L, N)-coordinates lie on the characteristic surface. The direction
of the velocity vector,'v, 1s defined by the angles 6 and ¥ which
are reccured in accordance with the previocusly established convention
(see Fig. 2.3). The angle & is the angle between the (V, z)-plane
and the (V, L)-plane.

Denote the unit vectors in the L and N directions by T and il.
respectively, and let the components of L and N in the r, f and z
directions be denoted by Lr’ L¢, Lz, Nr, N¢, and N 2® These camponents
are related to the components of the unit normal to the characteristic

- PUN P 4 -l
surface, n, and to V by the equations V* N=0; n « N = O;

-

n - -
N;*N§+N§=1;L'n=0;L'N=O;L§+L§+L§pland

(V * L)/V = cos p. Solving these vector equations for N, N¢, N,

L}, I¢, and Lz yiélds the relationships

N ,t"zvﬁ"%vz\

. cos (2.18)
n. vz -, Vf
N¢. = % 508 B (2019)

By Vp = B, V,
Nz" t cos M (2.20)




33

FIGURE 2.7

COORDINATE SYSTEM FOR
THREE DIMENSIONAL CHARACTERISTICS
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nrsinp-Vr

L.=1% TRT (2.21)
n¢ sin p = V¢
L¢ =3 cos K (2.22)
L =¢# R (2.23)
z cos {

Now one can determine the angle 5 from the vector relationships
We (zxV)

cos B = (2.24)
|z x Vl
and
sin 6 = N_’f (z_x V) (2.25)
l zxV |

vhere Z denotes the unit vector along the z-axis. Evaluating egns. (2.24)

and (2.25) gives

sin 5 = 7 2108 cg?uw =) (2.26)

and
cos@ sin 6 + sin® cos 6 cos (V =~ )
cos

cos § = %

(2.27)

10,

It may then be shown 13 that the compatibility equations for

homentropic irrotational flow are

( ) - tan u [cosa(—) + g8in 5 sin @6 (M) ]

-smutanp[cosasine(g%-gz) - ina( )} 0 (2.28)
L

<j+

( A +ta.np[0088( ) +Sinesm8(‘i_q§qu9‘2) ]
L L

s:Lna( ) _5in 6 cos & (d(t}/+¢))
cos W cos 4aL

=0 (2.29)
N

where su‘bscripted parentheses or brackets enclosing a derivative denote
differentiation on the characteristic surface in the direction which

holds the subscripted variable comnstant.
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2.2 Relgtionships on the Control Surface

The optimization problem is formulated by expressing the mass flow
rate, axial thrust, and other quantities of significance in terms of
their values either across or on the control surface.

The control surface for the nozzle, illustrated in Fig. 2.1, is an
arbitrary three-dimensionel surface constrained by the exit contour of
the nozzle and the kernel of the flow. The unit normal vector,'ﬁ; with
direction cosines given by eqns. (2.2) defines the control surface.

Since the control surface is a three-dimensional surface it is
convenient to transform the pertinent equations to the two-dimensional
(r, §)-plane. The transformation corresponds physically to projecting
the control surface onto the (r, f)-plane.* Partial derivatives in the
transformed (r, §)-plane will be denoted by (d/dr)¢ and (d/rd¢)r to
differentiate them from the partial derivatives with respect to the

three~-dimensional spatial coordinates.

2.2.1 Transformation Equations

The control surface can be described parametrically by the equation

F(r,$,2)=0 (2.30)
Equation 2.30) can be solved for z in terms of r and ¢ to give
z =f (I‘, ¢) (2°3l)

which can be used to locate the contrcl surface if the function f(r, f)
is known. The projection (transformation) of the control surface onto
the (r, §)-plane permits f(or z) to be considered as a dependent variable.

The transformation equations are

* The vector quantities on the control surface are not projected in this
transformation. For example, the quantities V, 6, and {/ are the same
for corresponding points on the two surfaces but their gradients will
transform in accordance with the transformation equations.
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d
), 5% % (2-32)

) ¥ e (2.33)

The partial derivatives of f can be evaluated in terms of the angles &

and @ (wvhich define the normal to the control surface) as

%{- = tan@ cos o (2.3%)

% = tan% sin (2.35)

Equations (2.32) - (2.35) are used for transformation from the control
surface to the (r, ¢)-plane. The optimization problem is solved in the
(r, §)-plane; however, as previously mentioned, the physical compatibility
of the flow is assured by proving that the control surface is a character-
istic surface. That proof involves & transformation of the design equations
from the (r, §)-plane back to the control surface. To determine the
equations for that reverse transformation, the unit vector on the control
surface in the plane defined 'by—z? and -\? is denoted ‘by_I:, and the unit
vector on the control surface end normal to L is denoted as -I‘T The

angle between T and V is (5 , 80 that

L V V - cos g (2.36)

or, in a more convenient form

= sin(; = cos@ cos § - sin@ sin ¢ cos (Y- a)
(2.37)

\'

where eqns. (2.1) and (2.2) have been used to evaluate the scalar product.
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The equations for the transformation from the (r, §)-plane to the

(L, N)-plane (control surface) are

o] a
<-§-];)’zs - ey G *ep G (2.38)
Gop)_ =t @)+ ), (2.39)
where | |

nr Vz - nz Vr

& =% 73 cos ¢ (2.40)
V4 = ny sin®

&, =% ¢nz cgs? (2.41)
ngV =n V

4 b, = # ? oy cosz? g (2.42)
. V.- Ar sin$

b2 =+ n_ cos§ (2.43)

2+2¢2 Integral Egquations
The axial thrust, T , and the mass flow rate, m, are written as
integral equations over the comntrol surfaces.

Axial Thrust: The element of the axial momentum flux, d'I'Z, across

the area element dA is

aT =V V dh (2.44)
¥4 z

vhere V_ is defined by eqn. (2.1), v Vv, is the axial component of
velocity, and dm is the differential element of mass flow across the
element of area dA shown in Fig. 2.8. Hence,

dh=pV*naa (2.45)
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FIGURE 2.8

ELEMENT OF AREA dA ON THE
CONTROL SURFACE
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The scelar product V ¢ o is evaluated from egn. (2.37). The area element
dA 1s given in terms of dr and df in the transformed (r, P)-plane by the

equation

ap - dr &8 (2.46)

cos@ ~
The axiel thrust is the sum of the pressure differential and the

axial momentum flux. Thus,

T, = J} F, dr daf (2.47)

vhere S is the area of integration in the (r, §)-plane snd

V2 sinf cos 6 ' (2.48)

= - 1o
F r (p Pa) * cos @

1 -
The term (P - P&) represents the difference between the gas pressure at
the control surface snd the ambient pressure.

Mass Flow Rate: The muss flow rate is to be held constant in the

optimization problem. Using eons. (2.45) and (2.46), the mass flow rate

is expressed as &n integral over the area S by the equation

n = Sé‘ F, dr dp = comstant (2.49)
vhere
ro V sin
F, = —E;(;;—P——f— (2.50)

20243 Constraint Equations
The constraints imposed on the problem &re of two types, namely
(e) gas dynamic constraints, and

(v) geometric constraints.
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Ges Qynamic Constraints: The gas dynsmic constraints ere imposed to

ensure.that tﬁé‘flow on the control surface can be matched to the flow in
the kernel without violating the laws of ges dynemics (mechanics). To
enum erate, firstly, the assumption of steady flow requires that the mass
flow rate through the nozzle be a constant value which is determiped by
the prescribed initial conditions. A second gas dynamic constraint is
related to the irrotational flow conditions which, in reality, is comprised
of three separate conditions for the components of the vortiecity vector.
The vorticity components normal to & streamline are zero if the homen-
tropic flow relations of Section 2.1l.2 are imposed. In addition,
however? the component of the vorticity vector along the streamline must
be zero. That constraint condition will be satisfied, it may be observed,
if the component of Ej in any direction other than the direction normal
to-v‘is zero. Therefore,the irrotationality condition will be satisfied
by & homentropic flow if the component of the vorticity vector normal to
the control surface is zero, provided, of course, that the velocity
vector does not lie on the control surface. .

Equations (2.42) = (2.45) are used to trensform the components of
the vorticity vector, eqns. (2.1%) = (2.16), onto the (r, f)-plane
giving rise to the following defiﬁiti%e eqﬁation which merely states the

assumption of irrotationality.

Fom b 5 (G )¢ (%,;)JA_,} &
b G, 45 G0+ 2 ) ‘o (2.51)
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where
A, =ein 9 cosR sinyY +sinB cos 6 sina (2.52)
A, = - sin 6 cosQ cosY = sinP cos 6 cos O (2.53)
A3 =cos ¢ cos@ siny - sin@ sin 6 sin (2.54)
A == cos g cosR cosy +sinf sin 6 cos (2.55)
A,). = 5in 6 cos R cos 4 (2.56)
Ac = 5in @ cos(; sin ¢ | (2.57)

Equation (2.51) requires the component of the vorticity vector
normal to the control surface to be zero.

A th:_lrd £8s dyﬁamic constraint is imposed on the boundary and requires
the component 91" the velocity vector normal to the surfece to be zero.
This consbraint is discussed in Chapter 4,

In sumsry the ges dynamic constraints are the constancy of the rate
of mess flow, ean. (2.49), the homentropic flow conditions, egns. (2.8)
and (2.9), the irrotationelity condition, eqn. (2.51), and the boundery
condition. The condition of constant mass flux and the irrotationality
condition are imposed using the Lagrenge muitiplier technique, the
ho:'qcntropic flov conditions ere imposed by substitution in the variational
problem, and the boundzary condition is Imvosed on the boundary.

Geometric Constraints: The geometric constraints are the conditions

imposed on the nozzle geometry and vre of primery interest to the design
engineer. Since the colution to the problem under consideration is
derpendent on the flow verisble relationships on the control surface, the

georietrie constraints must be expressed in terms of the variebles on the
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control surface and its boundaries. For the most part the geometric
constraints will be imposed on the outer boundary of the control surface,
that is, the intersection with the nozzle exit, since the relationship
between the constraint equations and the nozzle geometry cen be
interpreted more readily on this boundary.

Geometric constraints involving the control surface boundaries are
discussed in Chapter 4 and include conditions on both the nozzle length
and the exit geometry. Thus, for example, for an axisymmetric nozzle
the condition of axisl symmetry also can be considered to be a geometric
constraint.

It should be noted that different boundary conditions cen be imposed

on the problem without affecting the design equations.

2.3 Variational Relations

The mathematical problem of optimization related to three-dimensional
nozzle design consists of the formation of a variational integral and the
application of the calculus of variations to determine the relationships
among the flow variables on the control surface which will optimize the

thrust.

2.3.1 Formation of the Variational Integral
The variational integral, I, is formed by using Lagrange multipliers
to form a linear combination of the axial thrust and the constraint

equations on the control surface. Thus,

I= jf (F1+ )\2F2+ )\31:-3) dr ag (2.58)
S




43

vhere F,, F,, and F, are defined by eqns. (2.48), (2.50), and (2.51)

3
respectively, and A > and A 3 are Lagrange multipliers. Note that A 2
must be a constant whereas )\3 can be a function cf the independent
variables r and [6.. For convenience the term G is defined as

G=F + A F,+ A3F3 (2.59)

Upon exrending,

(V cos ¢ + )\2) rpV sin¢
cosQ

G=r(P-Pa)+
A 4 A av
+A3[ ‘)¢ P A() W G A5 G ’¢

+ A ( 6] (2.60)

vhere the coefficients A, - A, are defined by equs. (2.52) = (2.57).
The control surface projected onto the (r, §)-plane is illustrated

in Fige 2.9. The outer boundery,[’, encloses the area of integratiom,

S, and represents the nozzle exit contour. The variables evaluated

on [7 are as.signed the subscript e to denote the values which apply at

the exit 1lip of the nozzle. For exsmple, the exit radius of the nozzle

is denoted by r,,vhere r_ may be a function of . Thus egn. (2.58) can

be rewritten by including the limits of integration a&s
ax r (P)
I-= 5 5 G dr ap (2.61)
o “o
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FIGURE 2.9

INTEGRATION AREA, S, OF THE NOZZLE CONTROL
SURFACE PROJECTED ONTO THE (r,¢)- PLANE
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2+43+2 Application of the Calculus of Variations
The next step in the solution of the optimization problem is to
apply the calculus of variations to the variational integral. A
didactic derivation of the variational relations which are required to
solve the variational problem 1s given in Appendix B. The results of
that analysis can be stated as follows:
Consider the integral

2n re(e)
9= § (7 cmpmE, mE@nEe) e (26
(] o

where € is the variational parameter. The variables wi(i = 1,2, ¢eD)
represent p dependent variables (such as the problem variables V,

are defined by the equations

P, WV, etc.); the terms R, and T,

awi awi
(a) By = 5= 3 (b) T, = (2.63)
and the domain of integration is illustrated in Fig. 2.9.
If the boundary |' 1s permitted to vary, that is, if the
integration limit Ty is a function of the variational perameter €,

then the variation of I in eqn. (2.62) is

1
+ § (';‘g‘}n:%zn*%"m'; ) Oy O
n
Y
ar |
+ 5 G -&-é-?- ae ab (2.64)
r €=0
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In eqn. (2.64), the element dl is along the boundary I' in a positive
sense (keeping the area S always on the left); the vector T is the
unit outward normal to I' as illustrated in Fig. 2.9; the term E1

is the Fuler-lagrange equation for the tEE variable. From eqn. (B-18)

E, - %?'_1 -2 (%i.) - ;& (%z) (2.65)

The repeated varisble index i in eqn. (2.64) indicates a summation
on the index in accordance with standard convention. Hence,

E, & =E 8w +E, 8w2+:n+E Bv, (2.66)

etc.

Now the variational integral I, eqn. (2.61), is of the same form as
eqn. (2.62) where the dependent variables "i(i = 1,...5) are V, 9, ¥, a,
and § . The varisbles P and p are functions of V elone. Thus the

veriation of eqn. (2.61) is given by eqn. (2.64) where

AT S NPT T
r
\ (2.67)

E, ov, = % . [—- & )] -I (g-)] f (2.68)

By Dy = 'SEV/' [%r' (giﬁ';)]‘é ) [H% (%}TZ)‘LE oY (2:69)

-t :
E5 Bvg = 55 (e (2.71)

(2.72)




d
- & g 0 Tr ﬁ)r (2.73)
and
W
Ry = %)’6 3 Ty = %—d-’;)r (2.74)

The variations &x and 8@ are not independent but are both related

to veriations in f by eqns. (2.34) and (2.35). ILet

fr = % = %f: ¢ (2075)
and
24 = % - @;,)r (2.76)

where the transformation eqns. (2.32) and (2.33) are employed to obtain
the derivatives in the (r, §)-plane.

The variations of f_ and f¢, obtained from eqns. (2.3%) and (2.35),

are
af = 298__2_ 58 - tan sin o 5 (2.77)
¥ cos B F F
5f¢ = £ sin a P + r tanF cos O & (2.78)

cos e

Solving for &x and 8% in terms of &f r and 8f¢ glves

sg = cosa(} (cos 3, + g_i_:r;_g 8f¢) (2.79)
a=-ctn@ (sincar - 222 87) (2.80)

Hence, substituting egns. (2.79) and (2.80) into eqns. (2.70) and (2.71)

and adding ylelds

- L sy = . |
E), Bwh+E aw (s+ & = Eg Sfr+E.{ 8f¢ (2.81)
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vhere
E6 = coseP cos asﬁe - ctn(s sin a% (2.82)
and
2
_cos @ sinca &L ctn®  cos ¢ e td
E7 = 5 + = ot (2.83)

Whether & r and 5f¢ can be related now depends on the continuity
and smoothness of the control surface. To ensure that the control surface
is & continuous, smooth surface one can impose the integrability condition

on f{or z). The integrability condition is

of . of
35 = 'Sr'é (2.84)

vhich can be considered as an additionel constraint ecuation. Using

eqns. (2.32) - (2.35), eqn. (2.84) becomes

I%—; (r tane sin a)]¢ ==> [;‘% (r ta.ne cos a)]r (2.85)

in which form it will be used later as a design equation. Imposing the
integrability condition permits interchanging the order of the variation

and the partial differentiation in eqn. (2.81) so that

=5 (& >¢=<%;3-?)¢ (2.86)
and
oty =0 (Gp) = Cap)_ (2.87)

Hence the terms E . &f  + E7 &f‘¢ in egn. (2.81) can be expanded into the

e ol G0 ][5 [
(2.88)

form
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Applying Stokes' Theorem in the form of eqn. (B~9) (see Appendix B) to the
last two terms of ecn. (2.88) and writing

(a) Fr=-E7&f and
(v) rFy = Eg of (2.89)
the following result is cbtained. |
L dE
Sf (B of +E, &fy) dr af = - Sf[(a-r—é)wz-;l)]afdrdﬁi
s - S $ r
+§ (=, r%+-§-§ %En)sfdl | (2.90)
I“‘ .

Substituting eqns. (2.81) and (2.90) into egn. (2.64) for the

variation of I yields the result

5L = Ssyalardﬁ+§;n2a1-o (2.91)

vhere ' dE
By = E 8V +E, 8 +E, B‘P'[(‘&'ré)ﬁﬂ%)r] o (2.92)

end

&) ot (2.93)
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To satiefy eqn. (2.91), the integral of Hl over the control surface

nust be identically zero and the integral of H2

must be identically zero. On satisfying the condition that the integral

over the boundary. also

of Hl is zero on the control surface one obtains the design equations
for the control surface which are deduced in chabter 3+ The condition
that the integral of”He is zerc over the boundary together with the
constraint relations on the boundaries lead to boundary conditions which

are discussed in Chapter 4.

2.4 Summary of the Problem

The overall objective is to determine the three-dimensional thrust
nozzle contour that will produce the maximum axisl thrust when subjected
to constraints of fixed mass flow rate, limited overall length, shock
~free irrotational flow, and a prescribed exit section contour. The
design of the subsonic, transonic, and initial expansion contour is
vdetermined on the basis of design criteria other than thrust meaximiza-
tion and, therefore, is expected to be independent of the optimization
cfiteria. Consequently, all portions of the nozzle contour except the
supersonic contour are considered to be known for purposes of maximizing
the thrust. It is further assumed that the flow variables in the kernel
of the nozzle (see Fig. 2.1), vhich are necessary for further analysis,
are avallable. The deecti&e of the research presented in this report
consists in the determination of the supersonic contour of & three-
dimensional nozzle of gilven exit shape, limited length, and fixed mass
flow rate, which will produce the maximum axial thrust and maintain a

shock free irrotational flow.
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It is convenient to divide the procedure for the solution of the
problem into three parts, namely

(a) the mathematical formulation and solution of the optimization

problem,

(b) proof of the compatibility of the mathematical solution with

physically possible flow fields, and

(c) the development of a methodclogy for determining the optimum

supersonic contour.

The optimization problem is mathematically formmlated by introducing
& control surface which 1s constrained by the exit contour and the kernel.
The axial thrust which is to be maximized as well as the constraint
relationships are expressed in terms of the problem variables on the
control surface and its boundaries.

The solution of the optimization problem consists of applying the
optimization technigues (utilizing the calculus of variations) to
determine the relatiqnshipe among the problem varisebles on the control
surfece which will produce the maximum axial thrust under the constraints
imposed. The relationships on the control surface are the design
equations and are derived in Chapter 3.

In deriving the design equations, it is necessary to ensure that the
flow field which produces the optimum thrust conditions on the control
surface can be matched with the flow fleld already established in the
kernel. This may be achieved by showing that the control surface is a
characteristic surface in the flow and, therefore, is uniquely determined

and thus exists. The proof of the existence is contained in Section 3.2.
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In Section 3.3 the design equations for axisymmetric flow are shown to
be a special case of the three~dimensional design equations.

In Chapter 4 the boundary equations and their relationship to the
g:ometric constraints imposed on the nozzle exit are discussed. Finally;,
in Chapter 5 a methodology for applying the design equations to determine
the optimum supersonic three-dimensional nozzle contour i: discussed., As
is most often the case when considering supersonic flow problems, the
methodology involves numerical technigues and trial and error solutions.
The problems involved in the methodology for determining the design
contour are twofold: (a) those associated with the solution of the
mathematical equations by numerical means, and (b) those associated with
computerizing the equations. Those problems are discussed briefly in

Chapter 5.
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3. DESIGN EQUATIONS

The design equations are the equations relating thé flow variebles
on the control surface and, together with the boundary equations, provide
the relationships needed to locate the control surface and to calculate
the flow variables on it. 'Ihve‘ design equations include the equations
which arise from considering possible variations in the variables V, o,
Y , and f on the control surface and the comstraint equatioms which
mst hold on the control surface.

In this chapter the design equations are derived in Section 3.l.

In Section 3.2 the design equations are employed to show that the comtrol
surface must be & characteristic surface and is therefore unique. And
in Section 3.3 the design equations for exisymmetric flow are shown to
be a special case of the genei'al three~dimensional design equations
derived in Sectiom 3.l.

The boundary equations are discussed separately in Chapter 4.

3.1 Derivation of the Design Equations

To obtain the maximum sxial thrust, the integral
5L, = jj H ar af (3.1)

must be zero vhere H, is defined by eqn. (2.92). That 1is

31=E15v+E259+E35V-[§d—1.6-)¢+(;Z)r] & (3.2)
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vhere E,, E,, E3, and E7 are defined by eqns. (2.67), (2.68), (2.69),
(2.82), and (2.83), respectively.

In eqn. (3.1) the area of integration, S, is the projection of the
control surface onto the (r, ¢)-plane and is represented by the area
enclosed by the curve r1e in Fig. 3.1. The curve r1k represents the
projection of the intersection of the control surface with the outer
boundary of the kernel onto the (r, §)-plane and divides the area S
into an inner area Sk common to the kernel and an outer area Se external
to the kernel. Hence eqn. (3.1) can be written as the sum of two

integrals in the form

8I, = Jf Hldrd¢+ jy Hldrd¢=0 (3.3)
Sk Se

Over the area S, the variables V, o, W/ are determined by the initial
conditions. Further, the variation &f can be made zero on Sk by
requiring the surface sk to be a characteristic surface and continuous
with the surface Se’ Consequently, the design equations apply only
on the portion of the control surface external to the kernel. Hence,
the term "control surface" hereafter will apply only to that portion of
the surface external to the kernel.

The problems involved with matching the control surface with the
kernel of the flow are discussed as part of the methodology in
Chapter 5.

Consider now the variation over the area Se’ namely

8L, = j f H) dr dp = 0 (3.4)
s

e
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FIGURE 3.

CONTROL SURFACE PROJECTION ON THE
(r,¢) - PLANE SHOWING THE BOUNDARY OF
THE KERNEL, T,
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On the area S_ only two of the four variables V, o, Y , and f are
actually independent; however, the heretofore unspecified lagrange
multipliers make 1t possible to counsider all of the four variables as
independent. Consequently, inveking the classical arguments of varia=-
tional calculus it can readily be seen that the coefficients of the
varietions 8V, 56, & V¥, and & in egn. (3.2) must each be identically

zero. That is,

(3.5)

d ' d
w B[S - 0
4
3 > r
and ’
dE
6 ‘ _
- G ¢ - (?—)r =0 (3'8)

vhere G is defined by eqn. (2.60), R; and T, (1 = 1,2,3) are defined by
eqns. (2.72) - (2.74), and E; and E7 are defined by egns. (2.82) and
(2.83).

The indicated differentiations in eqns. (3.5) = (3.8) are long
and tedious but straight forward. To reduce thé presentation of the

algebra, certain recurring groups of terms are redefined as follows.

V cos 6 + /\2

X, = 7 — (3.9)
A, cos @

X3 = “-%V——-‘ (3.10)
. _

D, = (6;3);6 , (3.11)




ax
D¢ = (rd ) (3.12)
r
A7 = sin 6 cosg  + sin? cos 6 cos (V= ) (3.13)

In terms of those definitions, eqn. (3.5) can be expanded as

-F_‘Lah1+rs:l.ne(sinw Dr-cos(y D¢)

T )\3 sinB sin a} &d()\3 sin@ cos a)}
+ cos 95[ = L-{ =1 rE:o
(3:1&)
where
hy = FB':% (x, sing ctn® p + A, &in 6) (3.15)

In eqne (3e14) the term
)\3 s:l.n@ sin @ ()\3 cos(g

= = = )rta.n? sina=X3rtan@ sin o
(3.16)
and the term
A
3 sin(i, e = X3 r ta.ne cos o (3.17)
Thus, |
[g_()\jsing sina)} .{d ()\asin(:" cosa)] i
ar | v p L= ! r

rtanﬁ (sinotDr- cosaD¢)

d 1 .4
+ X3 { {35_(1' ’ca.n?, sin oz):(’lS [Hﬁ (r ta.nf& cos a)\Jrg
(3.18)
The last line of egne (3.18) is zero due to eqn. (2.85); thus, eqne. (3.1%)

becomes
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-E1=hl+rsine (sin ¢ Dr-cosL[/ D¢)
+1rcos @ ta.nP (sinaDr- cos aD¢) =0
In an anslogous menner eqn. (3.6) is expanded to give

- By = h, + rV cos 6 (sin ¥/ D, - cos V D¢)

- rV sin 6 tan (sin @ D_ = cos @ Dg) =0
r g

where

hagfngp—(x3p7+sinesm?)

Equation (3.7) expands into the equation
E, = h; - rV sin 6 (cosy D+ sin Y D¢) =0

vhere

h3 = rpV2 X, sin 6 ta.nF sin (Y=~ a)

Equation (3.8) becomes

dhh dh
(‘é}")¢ + (-“_“%)r +rD_ (m%_ez)r

-rD¢ (i——"——zdvggse)¢=0

where

h), = rpV2 X, sin 6 cos

hssrpvz X5 sin ¢ sin ¥

and the condition
[%; (& cos 92)r L . {%ﬁ I sos 62)¢]

has been used to reduce the result.

r

(3.19)

(3.20)

(3.21)

(3.22)

(3423)

(3.24)

(3+25)

(3.26)

(3.27)
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Equations (3.19), (3+20), (3.22) and (3.24) correspond to eqrs.(3.5) -
(3+8), respectively. Further reduction is now possible. Solving eqnse (3+20)

and (3.22) for Dr and D¢ the following equations are cbtained.

Dr X2 A8

-p-v = - Sin? Ccse « sin 0 sin W (3028)
and

D X. A

| 2 9

Bg N sin? cose + sin ¢ cos\Y (3.29)
where

Ag =sin 6 siny + sin@ sin? sin o (3.30)
and

A9 = s5in 6 cos ¢ + 's:Ln@ sin? cos O (3.31)

By substituting eqns. (3.28) and (3.29) into egqn. (3.19) and simplifying
the result as far as pbssi'bie one obtains the result, namely,

tanag’ = taneu (3.32)

From the problem geometry it is readily deduced that u =‘f . This
result is significant in that it requires the control surface to be in
8 characteristic direction.

Equation (3.24k) can be simplified by using eqns. (3.28), (3.29),
and (3.32) and expanding the partial derivatives. The following equetion
1s obtained as a result of the simplification.

oV X, [Bl (dV)

sin ¢ cos‘s

¢v('75) ()¢

7) +B (dw)¢+36 (—%) + == ]-0 (3+33)
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where
B = A9 cos 6 + cos p ctn p sin 6 cos@ cos ¥ (334)
B, = Ag cos 6 + cos K ctn p sin 6 cosrg sin (3.35)
B3 = - Ay sin 6 = sin p cos(B cos 9 cos i (3+36)
B, == Agsin 6 = sin p cos\}, cos 6 sin (3.37)
B; = sin ¢ sin 6 cosf sin ' (3.38)
and |
By = sin p sin 6 cos? cos Y (3439)

In summary, the four equations derived by employing variational
techniques on the control surface, namely eqns. (3.28), (3.29), (3.32),
and (3.}33) plus the constraint equations, eqns. (2.49), (2.51), and
(2.85), constitute a set of seven design equations with the seven
unknowns V, 6, ¥ , a, @ R /\2, and )\3. A methodology for the solu~

tion of the design equations 1s discussed in Chapter 5.

3.2 Proof of the Existence of the Solution

The design equations derived in Section 3.1, along with the boundary
equations, are sufficient for locating the control surface and for
determining the flow properties on it. However, there is no assurance
that it is possible to produce the optimum flow conditions on the control
surface with a shock free irrotational flow which will match the given
flow in the kernel. That 1s, the constraints emplo&ed in deriving the
design equations do not explicitly require that a shock free flow fileld
exist which will produce the desired flow conditions and also match the

flow in the kernel. In general, the realization of such matching 1s
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highly unlikely unless the control surface is a characteristic surface.
If, however, the control surface can be shown to be a characteristic
surface, a matching of the flows is possible and the compatibility of
the derived solution is assured. 1It, therefore, is sufficient to show
that the control surface is a characteristic surface.® Thus the approach
used here is first to assume that the constraints implicitly require the
control surface to be & characteristic surface.and next to show that the
foregoing assumption 1s valid by demonstrating that the design equatioms
define the control surface as a characteristic surface.

In Section 2.1l.3 the necessary and sufficient conditions for &
surface to be a characteristic surface are discussed. Briefly a
characteristic surface must satisfy two requirements. First, it must
be oriented in a characteristic direction as required by egn. (2.17);
and second, the compatibility equatiors,egns. (2.28) and (2.29),must be
valid on the surface. Those conditions, in fact, will be demonstrated
to be valid,

It is evident from the design eqn. (3.32) that the control surface
should be oriented in a characteristic direction. Therefore, the first
of the conditions required for the control surface to be a characteristic
surface is assured. 1It, then, remains to show that the design equationé
and the constraint equations may be employed to derive the compatibility

equations, eqns. (2.28) and (2.29).

* Tt may be observed that one may have also imposed the condition that the
control surface be a characteristic surface., While that constraint
would also lead to a physically possible solution, it does not assure
that the design equations by themselves would lead to the condition that
the control surface be a characteristic surface. Furthermore, it is
found in practicel that such a constraint leads to rather large dif-
ficulties in the methodology for the final computation of the flow.
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The procedure for deducing the compatibility eqn. (2.29) 1is to
transform the constraint eqn. (2.51) from the (r, §)-plane to the control
surface. Since the control surface i1s oriented in a characteristic
direction the transformation eqns. (2.38) and (2.39) can be employed to
transform to the (L, N)-coordinates on the control surface. The

transformed constraint egn. (2.51) becomes

-0y @) +o, ¢ &F W+ @) to @@

+ c5 (9-(-(1-/‘1—1'1&)N + Cg (QQ%-Q)L + c7 =0 (3.40)

where
Cp=h 8 +A, Dy (3e41)
Co= Ay 8, +4A,b, - (3k2)
63 zA e +A D (3.43)
Cy =Asa, +4) b, (344)
Cs=Ag ey +AcDdy (3445)
Cg = Ag &y + Ag b, (3.46)

and

o a-oy @ - b (3.47)

It 1s then necessary to evaluate the various terms and coefficients
appearing in egn. (3.40). The coefficients A, = Ag are defined in
eqns. (2.52) = (2.57) and the coefficients 8 &y by, and b, are defined
by eqns. (2.40) =~ (2.43). From egns. (2.38) and (2.39) the relationships
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a
2
(%)N - r(sy b, = &, b,) (3.48)
and
d !
(dN)L = r(al 'n2 - 8, 'b1) (3.49)

are readily obtained.

In evaluating the» coefficients C:L - C7 the angle 5 is introdug:ed 7
as defined by eqns. (2.26) and (2.27). The choice of sign in egns. (2.26)
and (2.27) is made by defining 8 as the angle measured counter clockwlse
from the (V, z)-plane to the (\_/", 'i)-plane. Then, on the basis of
geometry, ‘eqn. (2.26) becomes A

sin®  sin(¥ - a)

sin & = = cos & (3~50)
and eqn. (2.27) becomes
cos Sa cosB sino +sinB cos 9 cos(V-a) _ Ay (3.51)

cos T cos
where A7 is defined by eqn. (3.13).

The coefficients C; = C,'7 in eqnse (3.41) = (3.47) are obtained in

terms of the angles p, 6, and 5 as follows.

Cp =0C, =0 (3.52)
C, = cos u (3+53)
Cy =sin 5 (3054)
C, = sln pcos 8 (3.55)
C5 = = sin 6 cos B (3>-56)

C; = 5in u sin 6 sin 3 (3+57)
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Substituting in egn. (3.40) for ¢y = C7 from eqns. (3.52) - (3.57)

and dividing throughout by cos u, the following equation is cbtained.

1 ,4v sin 8
V(dN)L+cosu( 2) + tan p cos & (32 )

_sin 6 cos & A(¥Y+P) a(¥+ 8)
o5 1 ( Fia )N + tan ¢ sin 0 sin 5 ( = )

(3.58)
which 1s precisely the competibility eqn. (2.29). It is apparent that
eqne. (2.29) arises solely from the irrotationality constraint.

Next, in order to derive the compatibility eqn. (2.28) from the
design equations, egqn. (3.33) is trensformed to the (L, N)-ccordinates

using eqns. (2.38) and (2.39) to obtain

"1"17(%){ (‘”’) +x, 20 +x, (& W,
+ K (ME‘E'Q)N + K¢ (-d-(%%,-m)L K =0 (3.59)
vhere

K, =B & +B,b (3.60)
K,=B) a,+B,b, (3.61)
K;=B, 8 +B, b (3+62)
K, =B, a, + B, b, (3+63)
Ks = Bg a) + Bg by (3.6k)
K = 135 a, + B; b, (3465)

K =2 -5 (-é) - B (d—f‘) (3466)




65

To evaluate K, * K7 eqns. (3.3%) « (3.39) for B, = B, equs. (3.30)
and (3.31) for Ag and A9, egns. (2.40) - (2.43) for 85 8, by, and b
and egns. (3.50) and (3.51) for sin 5 and cos & are employed. After

22

some algebraic manipulation the following result is obtained.

= coss:ncﬁsp (3.67)
K, = cos> 1 sin @ sin & (3.68)
Ky =cos@ cos 8+ sin 6 sin® § cos u (3.69)
K, ==-sin §cos 6 sin® H (3.70)
K5 = sin & sin u s8in 6 cos 6 (3.71)

Kg = sin p sin 6 (cos & cosB + cos u sin 0 sin° 5) (3.72)
and _

K, =0 (3.73)

Equations (3.40) and (3.59) cen now be combined to eliminate the
term containing (dV/dN)L. It is easily verified that the resulting

equation is

2 .
_cos pcosB \ 1 avy _ doy . de
T iv(dL) .tanu[cos s(dL)N sinusin&(dN)

N L
+sin6sin5(ﬂ%m) +smusmecosa(ﬂd‘!ﬁtﬁl)ll]§ 0
N ,
(3.7%)

If eqne (3.74) is mulitiplied ’byL- sin u/(cos2 u cose )] , one obtains
precisely the compatibility eqn. (2.28) as the resulting equation.
It has now been established that (a.) the control surface is

oriented in the direction of the characteristic, (b) the compatibility
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ean. (2.29) may be obtained starting from the irrotationality condition,
and (c) the compatibility egn. (2.28) may be obtained starting from design
eqne (3.33) and the constraint eqn. (2.51)s Thus the control surface
defined by the design equations is a characteristic surface, and the
compatibility of the flow on the control surface with the flow in the

kernel is assured.

3«3 The Special Case of Axisymmetric Flow
The three~dimensional design eqns. (3.2%), (3.28), (3.29), and
(3.32) reduce to the axisymmetric design equations2 as a special case.

The conditions for axlsymmetric flow are le 0, ¢ =mn, and

(av/ap),. = (ao/ag)_ = (aB /af) = (A /aB) = O. Substituting these
conditions into eqne (3.32) yields the relationship

tang%’ = tan2 B = ctn” (@ - 9) (3+75)

From geometric considerations eqn. (3.75) becomes
=R =g =&
=@ -0-3 (3.76)

Imposing the axisymmetric flow conditions on eqne (3.28) ylelds

A
D= [%; (—%fﬁ-)L =0 (3+77)

r
and, since )\3, (5,a.nd V are not functions of f,eqn. (3.77) reduces to

)\ cos

= = constant (3.78)

a relationship which adds nothing to the problem solution.
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Equation (3.29) becomes

%gOL(Vcose+)\2)(sin9-sin§ sin p)

rp Veln p cos? +sin 6 (3.79)

vhich yields the result
Vcose+)\2=-Vs:lnetanp (3.80)
vwhen egqn. (3.76) is employed to elimina.teﬁ o Finally, eqn. (3.24)

becomes

%-r- [rp‘v’ (Vcos g+ )\2) sin e:l =0 (3.81)

under the axisymmetric flow conditions. Integrating eqn. (3.81) and

substituting from eqn. (3.80) the following equation is obtained.

rpV2 sin® g tam p = k (3.82)

2

vhere k2 is the integration constant. |
Equations (3.76), (3.80), end (3.82) are equivalent to the design

equations derived by Rao? for the optimum thrust design of an axisymmetric

nozzleJ*

* The design eouations (3.76), (3.80), and (3.82) differ from those

. obtained by Rao due to the notation differences and the method of
describing the control surface. When these differences are taken
into account the two sets of equations are ldentical.
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L. BOUNDARY CONDITIONS

The design eqns. (3.28), (3.29), (3.33) and (3.34) which are
derived in Chapter 3, together with the ccnstraint relations (2.49),
(2451), (2.85), and either (2.34) or(2.35), establish relations among
the dependent variables on the control surface, namely V, O, Q’, o, @ ’

£, X, and A * However, in order to solve the design equations it 1s

3)
necessary to know the velues of the dependent varisbles on the boundaries
of the control surface. The boundaries of the control surface are:

(a) the boundery at the intersection of the kermel with the control
surface (the boundary r'k in the (r, P)-plane, illustrated in Fig. 3.1)
and (b) the boundary at the intersection of the control surface with the
nozzle exit contour (the boundary f‘e in the (r, §)-plene, illustrated

in Fige 3.1). The latter, for any nozzle, pertains to the conditions at
the exit section of the nozzle. The boundery conditions accordingly

may be divided into two parts.

l. At the inner boundary: The conditions of flow at the inner

boundary must match the flow conditions in the kernel which in turn
depend upon the known or prescribed conditions in the wholly supersonic
region (downstream of the throat) and the initizl turning of the nozzle
valle As stated earlier, the flow conditions immedistely downstreem of
the throat are fully prescribed, while the extent of the initial turning
of the nozzle wall may become part of the final process of iteration

required for determining the optimized flow geometry.
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2 At the outer boundsry: The boundary conditions at the outer
boundary relate the flow varisbles snd the variation of the flow varisbles
around the contour forming the exit seétion of the nozzle.

The primary interest in evolving boundary conditions therefore
should rest at the ocuter boundary. A set of relationships must be pre=-
scribed which relate the flow variables among themselves which ere valid
explicitly at the exit section of the nozzle.

These relationships or boundary equations arise from three require-

ments. The first requirement 1s the condition that is imposed on the
flow by the fact that the flow boundary is a continuous stream surface
and will be referred to as the natural boundary condition. The natural
boundary condition requires that the component of the velocity normal
to the nozzle wall be zero.

The second source of boundary equations is the geometric constraint
relationships which are imposed on the shape of the flow contour at the
exit plane. There is some flexibility in the number and form of the
geometric constraints which can be imposed. For example, only nozzles
with exit contours which lie on a plane normal to the z-axis may be
considered, as is in fact done in this chapter. It is possible, how=-
ever, to consider cases in which the exlit contour may be a function of
¢ either in a prescribed or in an arbitrary manner. In relation to the
variational problem it is important to distinguish among boundary
contours that are prescribed, partially prescribed, or left free to seek
their optimum value. For example the length may be prescribed to be a

given constant for all points on the nozzle exit boundary or it mey be
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prescribed to be a given function of P as is done in the second problem
example in Chapter 5. In both cases the length is prescribed. If,
however, the length is required to be the same for all points on the
boundary but no restriction is placed on its value,then the length is
partially prescribed. Finally, there may be no restrictions whatever
placed on the nozzle length in which case it is considered arbitrary
with respect to the optimization problem and the problem requirements
will then dictate what value the length must take to satisfy the require~
ment of maximum axial thrust. It is noted that allowing the length to
be arbitrary will result in the design of a perfect nozzle and, therefore,
since the objective here 1s to design a shorter than perfect nozzle which
will produce maximum thrust,it is always necessary to prescribe the
nozzle léngth. Other geometric constraint relationships which may be
employed are discussed in Section 4.2.

The third source of boundary conditions is the transversaiity
equation which involves variations of the dependent variables on the
boundaries. It will be observed that in egqn. (2.91) the variation of I
is written in two parts, namely the variation on the control surface
from which the design equations of Chapte; 3 are derived and the
variation on the control surface boundary. Considering the latter
variation, namely the variation on the boundary, and setting it to zero,
one obtains the equation

§r' H,dl =0 (k.1)

e
vhich 1s the transverselity equation of optimization theory.
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The integral H, is defined by equ. (2.93). That is,

2
dr

g e

Hy=G| 3 ¢

2

E
+ (B r&+}-§%l-;)8f (4o2)

vhere ® is the unit outwerd normal to the boundary, E6 a.nd E7 are
defined by egns. (2.82) and (2.83), G is given by eqn. (2.60), and R,
and T, (1 = 1,2,3) are defined by eans. (2.72) ~ (2.74). Thus eqn. (4.1)
may be employed as a boundary condition end requires that I be stationary
on the boundary. Boundary equations are cbtained from eqn. (k.1) by
considering variations in Vv, @, Y , f, .and r.

It is important that the boundary conditions themselves should be

self~consistent. Thus,the variations introduced in the third of the

~ aforementioned boundary conditions should sstisfy the natural boundary

condition and the geometric constraints impesed.

In the following sections the boundary eguations (arising from each
of the three aforementioned sources) are considered in detail. The
discussion is related to the design of & nozzle under the following
conditions:

l. the z-axis is a streamline; thus there exists in the flow one

stralght streamline, namely the z-axis; aud

2. the exit plane of the nozzle 1s normal to the z~axis. Thus,

the length of the nozzle (measured from a reference plane which

is also normel to the z-sxls at the throat) is independent of ¢.
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The implications of the boundary geometry in the exit plane are
explored for the particular example by deriving the boundary equations
for both an arbitrary geometric shape at the exit and a prescribed elliptic

contour at the nozzle exit.

4,1 Natural Boundary Conditions

The natural boundary condition constrains the velocity vector to
lie in the plane tangent to the nozzle wall at the exit section. The
following developmeat of the constraint equation from the natural boundary
condition applies, as mentioned in the preceding paragraph, to the design
of a nozzle with the exit contour on a plane normal to the z-axis.
Consequently, the exit contour and its projection on the (r, ¢)-plane
(the curve ' in Fig. 3.1) are identical. |

The unit vector tangent to I o 1s designated 'by-f and the unit
outward normal to the nozzle boundary at the exit plane by ?. The
direction cosines of-i and—ﬁ in the r, ¢, end z~directions are denoted
as 1r’ l¢, 12, P.; :p¢, and P, Now, since—l‘ lies on the control surface,
lz =0and 1 °Tx‘= O+ Thus, it can be shown that

l.=sina eand 1¢ = =co8 O (k.3)

A A - S ’
From the relationships p * V=0 and p ¢ 1 = O the direction cosines of

_ﬁ can be shown to bde

- COS8 O cos O .
) [1 - 8in? ¢ sin? (W--a)] /2
pg ~cos 6 sin & (%.5)

) [1 - sin? g sin (¥~ (1)]17é
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_ sin 6 cos (VY- a)
- 2 - 7 (4.6)
[1 - sin® 0 sin° (Y= oz)]1

-mb
The unit vector normal to 1, orlented in the positive z~direction,

L

el
and in the plane tangent to the nozzle wall is denoted as t. The

-
direction cosines of t are readily shown to be

in 0 (Vo)
tr f 2COS 04 (2308 r- alle (ko?)
[1 - s1? 6 sin® (V- 0]
t¢ - sin @ sin @ cos (¥~ oz)/a (4.8)
[l - 8in? ¢ sin® (- oz)]l ‘
t = cos O (“-09)

‘ i_l - sin® ¢ sin® (Y- oz)]l/2

.
The velocity vector is now resolved into ite components in the -5, 1,

—
and t directions as

vp = 0 (k.10)

V; == Vsin ¢ sin (V= a) (k.11)
| \ |

V, =V [1 - sin® @ sin® (Y a)]l/ (k.12)

Equations (4.11) and (k.12) are used to relate the veriations 8V, and

GVt to 50, 8¢, 8V, and 8x. Their use is {llustrated in Section k.3.

k.2 Geometric Constraints

The geometric constraints can be imposed by a design engineer to
require that the thrust nozzle contour conform to specified geometric
conditions. One constraint already imposed is that the exit contour lie
on & plane normal to the z-axis. Other geometric constmints may include

one or more of the following.
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Lhe2.1 Fixed Length
The function £ defined by egn. (2.31) defines the length measured
along the z-axis to a point on the control surface. Therefore ,fe
represents the nozzle lengthe The nozzle length will be a fixed quantity
if the total veriation in fe expressed by the eéquation

dfe

— d€ = O (k'13)
de €x=0

is zero.* Since the exit contour is in a plane normal to z,

£, = £, (€5 (e, 9)) (kodk)

and since r is a dependent variable on the boundary, the total variation

in the length fe can be written in terms of E\fe and 8r as

ar

e ¥ ar x
— ae = 8 + &= = de = 8f + B (k.15)
de €=0 e or ae €=0 e or

ke2.2 Prescribed Exit Contour
A geometric constralnt may be imposed on the shape of the exit
contour. As an example, the boundary curve r'e’ 1llustrated in Fig. 3.1,
may be required to be elliptic in shape; in which case the equation for F e
could be written in the form

r° (ea cos® p+1) - a°

= 0 (ke16)

where e is the eccentricity of the ellipse and a is the length of the
semi-me jor axis. If both e and a are prescribed, then there is no
allowable variation in r on r'e and 5r = O. If e is fixed but a is allowed

to vary then

* Tt may be noticed that egqne (4.13) does not require the length to be the
same for all values of ¢. This restriction must be imposed separately.
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dr _ _r
Ege de = 8r == Ba {4.17)
=0
If a is fixed but e is allowed to vary then
er3 2
r = - =5~ cos P se (4.18)
a
And if both a and e are allowed to vary then
T er3 2
8r =~ Ba - =5~ cos 6 Be (4.19)
a

Other geometric shapes can be prescribed for the exit curve f’e

in a similar manner.

4.2.3 Other Constraints
Other geometric constraints, if introduced; must be expressible in
terms of the boundary curve T1e° In general, each set of geometric

constraints constitutes a separate problem and will require a separate

analysis of the boundary equations.

4.3 Variational Relationships on the Boundary

Finally, the variations of the dependent variables on the boundary
r1e’ namely &V, 56, sW, &f, and 5r are considered. In considering those
variations in eqn. (4.2), egn. (4.2) is reduced to an equation contain-
ing only variations which can be considered as independent and arbitrary.

The procedure for reducing eqn. (4.2) depends upon the geometrical
constraint relations which are introduced as boundary conditions. The
procedure is discussed first without prescribing the exit geometrical
shape; later, the particular example of a nozzle with an elliptic exit

section is considered to clarify the implications of the several varia-

tions involved.
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The nozzle under consideration is assumed to have a length independent
of Po* Furthermore, for the present, no restriction will be placed on
the exit shape. The unit normal to the boundary, Tn\, is related to the

-angle Q on the boundary by the relations

r%z-sina andgna-cosa (%.20)

The derivatives in the l-directlon along [7, are related to @ by the

equations
dﬁ _ . tos o ar _ ‘
T and 75 = sina (ha21)

Hence eqn. (4.2) can be rewritten in the form
Hy =8 Br+g, 8V+e; %
+ g, B¢ + &; &f, (4.202)
where the coefficients g - 35 can be evaluated by differentiating

eqn. (2.60), using the definitions given by eqns. (2.52) = (2.57),

(2.72) = (2.74), (4.20) and (k.21) to give

g = §_°_<;>'.§_.q (4.23)

& = “ :—V-a sin 6 cose sin (Y= a) (lo2k)

8 = - Arj cos e'cosF sin (Y- o) (k.25)

g = - &;3 sin 6 cos (3 cos (Y- ) (k.26)
end

35=-E7sina-E6c°f_°‘ (ko27)

vhere E6 and E7 are defined by eqns. (2.82)\;9.‘;(1 (2.83).

* The condition that the length be independent of  is equivalent to the
condition that the exit contour lie in a plane normal to the z-axis.
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Equation (4.15) is employed to eliminate 8f, from eqn. (4.22) and
the fixed length restriction, eqn. (4.13),1s imposed. Equation (4.22)

then becomes

Hy= (g - S g) or v 8, 8V + g, 80+, 5Y (1.28)

The term 8, 5V + 33 %o + 8, 5 can be evaluated on the boundary in terms
of variations in the velocity components Vp, Ve and V’c derived in

Section 4.1. The variation &V, is deduced in terms of &V, 89, 8¢ , and

8x from eqn. (4.11) as

8V, = » sin 0 sin (¥~ @) 8V = V cos 6 sin (W= o) 86

1l

- Vesin 6 cos (V= ) 59’»+Vsin 6 cos (V= a) sx
' " (4.29)

Thus the term
A, cos -
&V +g 89+gu5ty=_3;v_.§.5v.A391n9005€’¢°5(w O‘)aa

82 3 1l r
= X 8V ~ X, V sin ¢ cos (W-a) sa (4430)
vhere x3 is defined by eqn. (3.10). Substituting from eqn. (%.30) into

eqn. (h.28) gives

35)5r+x 8V, - X_ Vsin ¢ cos (V- a) s

371 3
(ke31)

If no further restrictions are imposed on the boundary, the variations &r,

= - of
Hy= (& =%

6Vl, and 5 can be considered as independent variations. Therefore, to

satisfy the transversality eqn. (4.1) the individual coefficients of &r,

&V,

boundary equations are:

» and &x must be identicaelly zero on the boundary. The resulting
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81'%:'85 =0 =~ cos Ot[(P- Pa) + (Vcos 0 + )\2) pV cos 6
A, sin@ :
+ -—-3—;‘7-—- %J-_ (V cos 6)_] (4.32)
and
Xy =0 (k.33)

which must hold on the entire boundary curve Fe.

It may be observed that egn. (4.33) can be written in terms of the
varisbles V, 6, Y , Q, e ,and A , on the boundary by employing the
design eqns. (3.28) and (3.29). That is, the eqns. (3.28) and (3.29)
which hold on the boundary as well as the control surface can be combined

to obtain the derivative of X3 along the boundary in the 1l-direction as

aX ax aX
31-3- == cos O (;d%)r + sin (a-;j)ﬁﬁ (ko34)

Now from eqn. (4.33) the value of X. is zero over the entire exit boundary

3
so that dX3/dl is zero on the boundary; therefore, substituting for
(dX3/rd¢) and (d.X3/dr)¢ from eqns. (3.28) and (3.29),the result

r

- Vsin 6 sin p cos (V- o) (4.35)
sin 3 cos 6 + cosg sin 9 cos (Y~ ) *

(Vcose+)\2)=

is o'bta;ned which applys on the boundary r e and can be used in place of
eqgn. (4e33).

On the other hand,if one wishes to restrict the exit contour of the
nozzle the variations 3&r, SVl, and 5 in eqn. (4.31) cannot remein

independent. For example, one may require the exit contour to be elliptic

with a fixed eccentricity and a varisble area. Then eqgne. (4.17) relates dr
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to &2 at the exit. Further, the angle @ is fixed by the eccentricity of

the ellipse so that 8x= O. The transversality egn. (4.1) therefore

reduces to
‘ . £ z |
§r'e {[(81 Loz  mex, 5V1§ ®
=§ X, 8V, dl + &a | (6, -Lg)Zar=o0 (4.36)
371 &1 " r &’ . ’
Pe e

where it has been noted that the varistion 8a is independent of the
integration around the boundary and has therefore been taken outside the
integrale. With no further restrictions,the variations 5Vl and da are
considered independent and arbitrary. The resulting boundary equations

are
§ (6« L) Ear -0 (ho37)
ry |
and

where eqn. (4.35) can be used in place of eqnes (4.38) if desired. If,
in addition, the initial conditions are such that planes of symmetry
exist which contain the major and minor axes of the ellipse, the pr@blem
can be reduced to computing the flow in one quadrant of the ellipse.
Also, the velocity component Vi canpnot now be considered arbitrery at
the planes of symmetry. The boundary equetions in this instance are
ean. (4.37) plus the equation for X3,
X;=0 (0 & p < 3) (4+39)

which is restricted to the portion of the exit contour between the planes

of symmetry.
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5. METHODOLOGY FOR DESIGN

The overall problem of design of a thrust nozzle may be divided
conveniently into the following problems:

le design of the subsonic portion of the nozzle;

2. design of the transonic region of the nozzle; and

3¢ design of the supersonic region of the nozzle.

If it can be assumed that the conditions obtained in the transonic
region where the flow speed 1s definitely supersonic are the initial
conditions in the design problem, the only region of interest, whether
the nozzle is optimized or not, is the supersonic region of the nozzle.
The design of that portion of the nozzle depends upon (a) the boundary
conditions required to be satisfied at the thrdat section and at the
exit plane of the nozzle and (b) any other constraining relations imposed
upon the flow regime. If one of the requirements in the design problem
is, for example, that the thrust from the nozzle should be the maximum
for given initial, boundery,and constraint conditions, the problem be-
comes one of determining en optimized solution.

When such an optimized solution is attempted, it has been shown in
Chapter 3 that a control surface may be postulated which intersects the
kernel and coincides with the designed geometry at the exit plane of the
nozzle; that such a control surface 1s unique in that it satisfies all
of the requirements for a characteristic surface; and lastly, that & set

of design equations may be obtained to determine the control surface.
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The manner in which the boundary conditions, necessary for obtaining
the solution, may be developed is described in Chapter 4. Considering
the intersection of the control surface with the kernel and the exit
plane of the nozzle, there are essentially ten boundary conditions related
to the problem varisbles on the boundaries. These conditions may be
glven in terms of quantities associated with the nozzle geometry and flow
parameters, but must be equivalent to the ten boundary conditions mentioned
earlier.

Utilizing the design equations in conjunction with a set of assumed
and given boundary conditions on the initial boundary, one can solve for
the control surface. The control surface so obtained must satisfy the
given terminal boundary conditions. Wwhen a discrepancy arises, it becomes
necessary to apply iterative methods of solution.

In broad outline, therefore, the determination of an optimized
nozzle contour involves the following tasks which must be performed in
the order indicated: .

le determine the initiel conditions. That is, determine the sub=~

sonic, transonic and initial expansion contours of the nozzle
for given inlet conditions. It will be assumed in the present
discussion that adequately detailed procedures are available
for carrying thils out; .

2. celculate the flow field in the kernel. The procedure for

computing three-dimensional supersonic flows by employing the

method of characteristics is given in Ref. 10;
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3+« choose the initial velue boundary ond assume values of the
problem variebles not given on thet boundary;

L, solve the design equations with the applicable boundary
conditions in order to locute the corresponding control
surface and to determine the flow variables on it;

5¢ compare the celculated boundary conditions on the terminal
boundary with given boundary conditions on that boundary.

If & discrepency arises perform the necesssry iterations; and

6. compute the flow field between the kernel end the control
surface and determine the supersonic boundary of the
optimized nozzle by following the boundery strezmline ut the
throat section of the nozzle. The procedure for this is given
in Ref. 10.

It is apparent that seversl alternatives may be possible in regnrd
to the folloring, even for & particulsr formuletion of the optimization
problen,

l. the manner in which the boundery conditions are developed;

2+ the choice of initisl and terminal boundaries; and

3« the method employed for solving the set of design equations.

A detalled discussion of those aspects of the problem is beyond the

scope of the present thesis. It is merely noted here that the pature of

the problem forbids even a firm recommendation in regard to the procedure
for the mathematical solution of the design equations except to point out
that numericsl methods may be tried within the limitations of possible

non-uniformities in the convergence of solutions. However a general
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discussion of the methods and the procedures that may prove sultable and
that are presently available is attempted in the remainder of this chapter.
In Section 5.1 the methods availasble for the establishment of the initial
conditions and for the calculation of the flow field in the kernel are
discussed.

Regarding the possible methods for the solution of the design equa<«
tions, two 1llustrative examples are discussed in Section 5.2. In both
cases the design equatlions derived in Chapter 3 are applicable. That is
the conditions of the homentropic irrotational flow of a perfect gas, a
constant mass flow rate, and a smooth continuous control surface are
requisites of the flow. The examples differ from each other in the
following respects.

Example one: (a) no specific contour is prescribed for the throat

contour and initial expension contour; they are not variable with

respect to the optimization problem, however; (b) the length is
prescribed and is independent of f¢ and (c) the exit contour is
elliptic with a given eccentricity and a variasble area.

e two: (a) an axisymmetric contour is prescribed for the
subsonic, transonic, and initial expansion comtour; (b) the length
is a prescribed function of P5 and (c) the exit contour is fixed
and corresponds to the exit contour of a truncated axisymmetric
nozgzle.

Those two examples will clarify mun: aspect: ol thesapplicution.of the
design equations. Example one, discussed in Section 5.2.1, is utilized

to illustrate in particular the principal features of a methodology that
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may be developed to design a nozzle under prescribed conditions. While
example two will serve & similar purpose; it is discussed in Section 5.2.2
primarily from the point of view of illustrating when three-dimensional
optimization procedures are unavoideble; for example; in a modification
of an apparently axisymmetric nozzle.

A method for calculating the intermediete flow field between the
kernel and the control surface and thus determining finally the optimized

nozzle contour is discussed in Section 5.3.

5.1 The Initial Conditions

According to the formulation of the problem as described in Chapter 3,
the initial conditions of flow are to be prescribed or obtained by cal-
culation before the optimization problem can be taken up. They include
the initial state of the gas and the wall contour for the subsonic, the
transonic, and the initial expansion portions of the nozzle. The subsonic,
transonic, and initial expansion contours will generally be determined by
such factors as the combustion chamber design requirements; heat transfer
requirements, fabrication limitations, and special geometric requirements.
The contours chosen determine the flow properties in the kernel; however,
the calculation of those flow properties depends upon a solution of the
transonic flow problem and also upon a part of the supersonic flow
solution. At present the solution to the transonic flow problem in
nozzles is limited to approximate solutions for axisymmetric or two-
dimensional flows. For non-circular throat cross sections it appears
that the approximate methods of Sauerl7 or of Oswetitsch and Rothstein18
could possibly be modified to apply to some simple non-circular throat

cross sections.
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The flow field in the kernel is calculated using the method of
characteristics beginning on an initial value surface which is the
product of the transonic flow solution. If the throat geometry is three-
dimensional, either the three-dimensional method of characteristics or
an approximate solution technique is required. Although the applications
of the three~dimensional method of characteristics have been limited, a
few solutions to three-dimensional flow fields which have been obtained
recentlylh’ls,together with advances in digital computer size and
technology,indicate that solutions of three-dimensional flow fields based
on the three-dimensional method of characteristics may become more
satisfactory in the future. Procedures for application of the three-
dimensional method of characteristics are given in Refs. 10, 13, 14, 15,

and 16.

5.2 Solution Methods for the Design and Boundary Equations

The design equations in terms of the (r, ¢)-ééordinates are eqns.(2.49),
(2.51), (2.85), (3.28), (3.29), (3.32), and (3.33). They are rewritten
here for immediate reference.

Equation (2.49) expresses the mass conservation constraint in integral
form, namely \

'S Jﬁ F, dr df = m = constent (5.1)
3 _
where S is the area of integration in the (r, f)-plane and F, 1s defined
by’ edne. (2050). .

Equation (2.51) is the irrotationality constraint, viz.



vhere the coefficients A, - A, are defined by eqns. (2452) = (2457)-

is,

vhere X_. and X_ are defined by egns. (3.30) and (3.31), and
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G

(5.2)

Equation (2.85) assures the continuity of the control surface.

(d(r tan P sin a)) (gi_Lr tan® cos a))
¢ r4p

Design egns. (3.28), (3¢29), (3.32), and (3.33) are
X A
2 78
(dr )¢ - eV (s:!.n K cosP

+ 8in ¢ sinV¥ )

X2 A9

ax
(‘df) = rpV (sin m cos(3 + sin 6 cos¥ )

r

sinu=cos€> cos 6 - sin(ﬂ sin 6 cos (¥ - )

rpV2X ¥ 1 1
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B
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are defined by eqns. (3.3&) - (3.39).

varisbles V, 6, ¥ , a,P s X

B %

(5.3)

(5.8)

(5.5)

(5.6)

"75

(5.7)

It

Equations (5.1) - (5.7) constitute a set of seven equations for the

» and X

2 3

egn. (3.30) as

Vcose+A2

X, = v

(5.8)

e 'The variable Xa is defined by



&7

where A 5 is the constent lagrange multiplier and may be determined by
satisfying the integral eqn. (5.1). Thus, one is left with the six
eqns. (5.2) - (5.7) for the six variables, V, 6, ¥ , a, @ , and X3.

In addition to the aforementioned variasbles, it is necessary to
determine the functional relation defining the length coordinate to a
point cn the control surface given by eqn. (2.31), namely z = f(r, ),
vhich can be obtained by utilizing the egns. (2.34) and (2.35). Further-
more, at any point on the control surface the Mach angle, i, and the
thermodynamic variables P, p,and T can be calculated from the known
initial conditions and the calculated value of V at any point.

Before seeking and attempting e (largely) triel and error approach
for the solution of the design equations (5.2) - (5.7), some simplifi-
cation can be achieved initially by combining'the design equations to
reduce the number of dependent variables from six to four as follows.

(a) Expend eaqn. (5.3) by carrying out the indicated partial

differentiation to give

o & 5% (%d%)r oy @, Gt =0 (59)
vhere q, - a5 are functions of r, @ and (3 .

(b) Differentiate eqn. (5.6) with respect to r and solve the result-
ing pertial differential equation for (ao/ dr)¢.

(c) Differentiate eqne (5.6) with respect to § and solve the
resulting partial differential equation for(da/ ﬁﬁ)r.

(@) Eliminate partial derivatives of & from eqn. (5.9) utilizing
the results of (b) and (c) above to obtain the following

partial differential equation in V, 6, ¥ , and @ .
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+ <d6

d
& <§§)¢ +q, (;;i,-,g)r )yt % —7;
IR R G v G v
(5.10)

Equation (5.10) constitutes the first of the four desired

)

equations.

(e) Eliminate x3 between eqns. (5.4) and (5.5) by differentiating
eqn. (5.%) with respect to P, differentiating egqn. (5.5) with
respect to r, and equating the right hand sides. The rqsult
is & pertial differensial equation in V, 6, ¥ , a and e

(f) Utilize the results of (b) and (c) above to eliminate deriva-
tives of @ in step (e) to give a partial differential equation

inv, 6, Y , and (5 ; namely

N Gy * v Gap), +U<)+v P

+ U, <§-§-)¢+u6 &+ vy <d‘5> “ g (g +1y = 0
(5.11)
(g) The third and fourth equations are egns. (5.2) and (5.7) which
may be left unaltered.
Those four equations in the variebles, V, 6, ¢/ , end (b constitute
the final set of design equations on the control surface. They are
common to both of the examples to be discussed under Section 5.2.1 and
5e2e20 | |
Before discussing those examples, the four egns. (5.2), (5.7), (5.10),

and (5.11) may be examined from the point of view of the mathematical
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methods available for their solution. Such methods may be summarized
as follows.

1. Tt will be observed that the set of four equations is presented
in the (r, ¢)—p1ane of the chosen coordinate system. By a
further suitable transformation, it may be possible to modify
the equations such that they are further simplified. Such
transformetions must be examined both from the point of view
of the complexities that may arise in numerical computation
in the transformed plane as well as from the point of view of
establishing the necessary reverse transformations.

2. Whether or not simplification can be obtained, the errors
likely to arise in the application of numerical methods of
analysis must be carefully examined. In genersal, an attempt
should be made to determine if the equations may be clas-
sified as hyperbolic, parabolic or elliptic depending upon the
relationships among the coefficients of the partial derivatives.¥
If the equations are hyperbolic, then characteristic directions
‘exist on the (r, ¢)-plane and & numerical solution utilizing
the properties of characteristics is possible. If the system
of equations is elliptic or parabolic, then numerical techniques
are generally unsatisfactory.

In spite of the computational difficulties that may arise, it is

possible to clarify many aspects of the application of the design equa-

tions by considering the following illustrative examples.

* Procedures for classifying systems of partial differential equations can
be found in a number of good references on applied mathematics. See,

for example, Ref. 19, Chapter 3.
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9¢2.1 TIllustrative Example One

The design eqns. (5.2), (5.7), (5.10), and (5.11) for the variables

v, 6, V) , and (3 are applicable in this example. Those equations relate

the variebles on the control surface, but are presented in the (r, f)-plane.

They have been derived under the following conditions:

1.

2

3e

LI

Se

6.
Te

the flow is homentropic and irrotational throughout the flow
regime ,and the working fluid is & mixture that can be represented
by a perfect gas;

the mess flow rate through the nozzle is prescribed;

the initial conditions at the throat section are prescribed
in a region vhere every point in the flow 1s supersonic;

the shape of the initlal expansion contour for the nozzle is
prescribed and, therefore, the flow variables in the kernel
are known;

the z-axis 1s straight and coincides with a streamline in the
flow and with the direction of desired thrust maximization;
the design ambient pressure 1s known; and

the control surface 1s a continuous smooth surface.

The boundary conditions and prescribed quantities (which define the

special features of the example) are the following:

1.

2.

the length of the nozzle is fixed and is independent of P
therefore, the exit contour of the nozzle must lie on .a pre-
scribed plane normel to the z-axis; and

the exit contour of the nozzle is elliptic with fixed eccentri~

city and variable area.
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In order to locate the control surface, one must know in detail the
flow variables in the kernel of the flow. The location of the boundary
defined by the intersection of the control surface and the kernel is
not known initially and, in fact, the location of that boundary con-
stitutes part of the solution.

The boundary conditions at the exit contour of the nozzle are
eqnse (4.35) and (4.37) plus the geometric constraints of a fixed length
independent of P and an elliptic exit shape given by eqn. (4.16).
Initially, it is necessary to choose either the inner boundary at the
extent of the kernel or the outer boundary at the exit plane as an
initial boundary for purposes of the numerical calculation. The choice

will, in general, depend on the number of known boundary conditloms on

each boundary since each unknown condition on the initial boundary will

require an iteration loop to determine the correct value on that boundary.
In this example the inner boundary is chosen as the initial boundary.
It is then necessary to assume (a) the coordinates of the inner boundary
and (b) the value for A 5 on the control surface. Since the varieble. X3
has been eliminated both from the design and boundary equations, it is

not necessery to include X_ in the solution procedure. The initial

3
value curve must be a continuous closed curve encircling the z-axis and
must be symmetric with respect to planes of symmetry that may exist in
the flowe No other restrictions are placed on the initial choice of the
initial value curve. Since the flow variables in the kernel are known,
the choice of an initial curve fixes the initial values of V, 6, ¥, a,

E} s Ty and f. The additional cholce of a value for )\2 (wvhich is constant
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over the entire control surface) then permits the control surface to be
calculated using a properly chosen numerical method of computation for
solving the design equations. It then remains to examine the resulting
boundary values on the terminsl boundary from the point of view of
compliance with the known, final boundary conditions. The desired exit
boundery conditions are obtained by performing iterations on the initial
choice of coordinates for the initiel value curve and on the ilnitial
choice of the constant ;\2. With regard to the lteration procedure the
following items are notec.
1. The constant mass flow requirement on the total mass flow in the
nozzle may provide a stopping condition for the calculation
of the control surface if an exit shape is assumed; however,
it 1s, in addition, essential that the mass flow also be
constant in each small segment A $ bounded by stream surfaces
passing through the z-sxis. The satisfaction of the constant
mass flow requirements for each segment requires the computa-
tion of the intermediate flow field between the kernel and the
control surface and, therefore, that calculation becomes pert
of at least one iteration cycle.
2. By satisfying the mass flow condition and iterating the valge
of A o to satisfy eqn. (4.35) a control surface is obtained.
The corresponding nozzle contour is the optimized contour for
the boundary conditions obtained on the terminal boundary and
the ambient pressure calculated from egne (4.37) (using eqn.(l4.32)

to evaluate the integrand in terms of Pé). This iteration
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- procedure has the disadventage that it. requires the calculation

of the entire nozzle contour for‘egch new set of initial date
but has the advantage that families of optimized nozzles are
determined; thereby valuable information regarding the relation-
ships between the initial and terminal boundary conditions is

obtained which can be used to improve the calculation technique.

5202 Illustrative Example Two

The design eqns. (5.2), (5.7), 15.10), and (5.11) for the variables

V, 6, Y s and G> are applicable in this'example. Those equations relate

the variables on the control surface, but are presented in the (r, §)-plane.

They have been derived under the following conditions:

1.

2e

3e

L.

Se

6
Te

the flow is homentropic and irrotational throughout the flow
regime,and the working fluid 1s a mixture’that can be repre-
sented by a perfedt gas; ; |

the mass flow rate through thelnozzle 1s prescribed;

the initlal conditions at the throét.secticn are prescribed in
e region where every point in the flow is supersonic;

the shape of the initilal expansion contour for thé nozzle is
prescribed and, therefore, the flow variables in the kernel
are known;

the z~axis 1is straight and coincides with a streamline in the
flow and with the direction of desired thrust maximization;
the design ambient pressure is kndﬁn; and

the control surface is a continuous smooth surface.
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The boundary conditions and prescribed quantities (which define the
special features of the example) are the following:

l. the subsonic and throat contours are axisymmetric and the initial

expansion contour in any (r, z)-plane is a circular arc of

fixed radius; and

2. the exit contour and length are prescribed in the following

manner.

(a) An optimized axisymmetric nozzle of a given length with
initial conditions corresponding to those prescribed in
1 in the foregoing is designed to the given design ambient
pressure.

(b) The optimized axisymmetric nozzle is truncated so that the
exit contour is on the two-dimensional surface which is
normal to the (y, z)-plane, slightly concave toward the
nozzle throat (in the shape of a parabola, sey) and inter-
sects the axisymmetric exit contour at two points (in the
(y, z)-plane).

(¢c) The comtour and length prescribed for the example are those
obtained for the truncated axisymmetric nozzle described
in (b).

It 1is noted that the nozzle length 1in this example is a prescribed
function of the angular coordinate § and, therefore, the problem?bannot
be solved using the axisymmetric optimization solution since no provision
is made in the axisymmetric formulation for a length which varies with

the angular coordinate. Apart from the complications which arise in the
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computation of the flow for the example under consideration, some inter-
esting features of a theoretical nature mey be observed. Those are as
follows.

l. The control surface which intersects the kernel of the flow and
coincides with the exit plane of the nozzle in this example is
not axisymmetrie; the control surface in an axisymmetric nozzle
is axisymmetrice. In the present example, therefore, all three
of the components of the unit normel to the control surface may
-have non-zero values.

2. The flow in the present example is not confined to the (r, z)-
plane for every value of f; the flow in an axisymmetric nozzle
is entirely independent of the angular coordi_.nate.

3« When the axisymmetric flow nozzle is to be deduced from the
general three~dimensional flow, it is necessary to impose both
of the conditions, LI/ = 0 and sin ¢ = O.

Statements 2 and 3 result from the fact that it is not possible, in
generel, to reduce the design equations (or their equivalent in some other
optimization problem solved by variational techniques) by imposing restric-
tions on the dependent variables. That is, the restriction ‘.// = 0 imposed
on the three~dimensional design equetions will not produce the design ~
equations for an optimized nozzle in which /= 0. This aspect of the
problem may be seen clearly by reference to the variational integral Il'
defined by egn. (3.1). Using the definition of egne (3.2) the variation

of Il can be written V

8L, = jsf[zl 8V + E, 8 + E, 1'd +()8f]drd¢=0 (5.12)
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vhere E;, E,, and E, are defined by egns. (2467), (2.68), and (2.69)

3
respectively and the coefficient of 3f is of no consequence in the
present discussion. The design equations were derived by setting the
coefficlents of the variations &V, 50, 5/ , and 8 to zero which is
Justified only if the variations can be considered independent and
arbitrary. If the constraint
Y=o (5.13)

is to be imposed the variation 5/ can no longer be considered inde-
pendent and arbitrary but is, instead, identically zero. Equation (5.13)
is then used instead of eqn. (2.69) (E3 = 0) in deriving the design
equations. It is clear that the resulting design equations are not
equivalent to the equations derived by imposing the constraint on the
general solution except under very special circumstances.

The point is further emphasized by deriving the design equations
with the constraint l'U = 0 but without restricting the control surface
to be axisymmetric.

In this example the irrotationality constraint is no longer required.
The problem formlation follows essentially that already presented in

Chapters 2 and 3, and the equations hy = 0, h, = 0, and (dhu/dr)ﬂs =0

2
are obtained where h,, h,, and h) are defined by eqns. (3.15), (3.21),
and (3.25) respectively. These three equations are combined to yield
the design equations

Vcose+/\2=Vsinetanu (5.14)

2
tan2p= sin“ ¢

(5.15)
coszg - B:Lnae xsin2 (o]




and

fl
o

%—1; (rpV2 sin® 6 tan ) (5.16)

Equations (5.1%) = (5.16) are not the same equations as are cbtained

from setting Y = 0 in the three~dimensional design equations. Specificelly,

the direction of the control surface as defined by eqn. (5.15) is no
longer in a characteristic direction except in the special case sin ¢ = O
(an axisymmetric control surface).

In summary, it mey be observed that (a) a truncated axisymmetric
nozzle, however truncated, is not an optimized nozzle even when the
original axisymmetric nozzle is an optimized nozzle, and (b) in whatever
manner the length of the nozzle and the shapes at the inlet section and
at the exit plane are specified, unless the flow is of a lower dimension
over the entire flow regime, the optimization problem must be posed as
& problem in three-~dimensional flow,

The remeining tasks for obtaining the nozzle contour in this example
are the same as those described under the illustrative example in

Section 5.2.1.

53 Intermediate Flow Field Calculation

The intermediate flow field between the kernel and the control
surface may be needed to impose the constant mass flow restrictions on
the control surface as a function of ¢ and, in any event, will be required
for the determination of the final optimized contour. Thls three-dimen-
sional flow field can be calculated using the three-dimensional method of

characteristics by modifying existing procedures to permit the use of the
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kernel and the control surface as initial value surfaces. Procedures
vhich can be resdily adapted to this calculation are described 1n detail
in Ref. 10.

The final contour is determined by computing the stream tube passing

through the nozzle throat.




6+ CONCLUSIONS

The problem of optimizing & flow geometry under given initial
conditions and constraint relations has been solved by the use of
the celculus of variations. In particular a three-dimensional,
irrotational, homentropic, internal flow problem pertaining to the
optimization of the supersonic portion of the contour of a thrust
nozzle is posed on the assumption that the initial conditions and the
exlt flow geometry are fixed while requiring that the value of thrust
(or momentum) obtained be a maximum within a specified length of flow.
In view of the three~dimensional nature of the flow, the length of
the nozzle 1s, in general, a function of the angular coordinate.

Two 1llustrative examples are discussed to demonstrate the
nature of the problems which arise in the actual application of the
general solutions (of the optimization problem) to particular cases.
The following are the principal conclusions which may be derived from
the investigation.

l. A three~dimensional supersonic flow geometry, such as is
obtained in the supersonic portion of a nozzle, can be optimized with
respect t0 & glven set of initlal conditions and a set of constraint
relations.

2¢ One formlation of the optimization problem may be based

upon a postulated control surface which cen be shown under the proper
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constraint conditions to be a characteristic surface and thus uniquely
determined.

3+ VWhile the design equations so obtained under certain general
requirements, such as integrability of the control surface, irrotation-
ality,end homentroplcity of flow, will apply in all problems (governed
by such requirements) on the control surface, each problem becomes
specialized in regerd to the boundary conditions specified and the
manner in which such boundsry conditions are chosen to be employed
for analysis.

Iy The nature of the equations determining the control surface
and the boundary conditions required for their solution meke it
imperstive that numerical methods of solution be emplcyed. Further-
more, a series of iterative procedures is required in relation to the
constralnts imposed on the boundary. Often the iterative procedures
may involve the computatioa of the entire flow field, unless great
simplifications are obtained in the basic design equations.

S5e VWhen a variational problem is formuleted for a three-
dimensional flow, there is no direct method of deducing a set of
design equations applicable tc & lower dimensional flow (e.ge. an axi-
symmetric flow). The conditions under which the higher dimensionsl
flow iz reduced to the lower dimensicral flow may be seen clearly,
but the solution to the problem of the lower dimensional flow has to

be fornmlated and solved by itself.
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APPENDIX A

NOTATION

aree

(1 = 1-9) coefficients defined by eaqns. (2.52) - (2.57)
(3+13), (3.30), (3.31) respectively

length of semi~major axis of ellipse
coefficients defined by eqns. (2.40) and (2.41)

(i = 1-6) coefficients defined by eqns. (3.3%) = (3.39)
respectively

coefficients defined by egqns. (2.42) and (2.43)

(L = 1-7) coefficients defined by egns. (3.41) - (3.47)
respectively

local sound speed
derivatives defined by egns. (3.11) and (3.12)
derivative operator

functional representetion of Euler-lagrange equations
defined by eqn. (2.65)

eccentricity of an ellipse

function defined by egn. (2.30)
function defined by eqn. (2.48)
function defined by eqn. (2.50)

function defined by eqn. (2.51)

function describing the control surface defined by eqn. (2.31)
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rartial derivative of f with respect to r as defined by
eqn. (2.75)

partial derivative of f with respect to § as defined by
eqnle (2076)

function defined by eqne (2.59)
@ = 1-5) functions defined by eqns. (4.23) - (4.27) respectively
finctions defined by egns. (2.92) and (2.93)

(i= 1-5) functions defined by eqns. (3.15), (3.21), (3.23),
(3425), and (3.26) respectively

variational integral defined by eqne. (2.61)
variational integral defined by eqne (3.1)
integral defined by eqn. (B-6)

(1 = 1-7) coefficients defined by eqns. (3.60) =~ (3.66)
respectively ‘

unit vector along a bicharacteristic on a characteristic
surface

r-component of unit vector T as defined by eqn. (2.21)
$=component of unit vector L as defined by egn. (2.22)
z=component of unit vector 1 as defined by egn. (2.23)

unit vector along the houndary of the control surface
r-component of 1 as defined by ean. (4.3) |
p-component of 1 as defined by eqn. (4.3)

mass flow rate |

unit vector normsl to control surface boundary (see Fige. 2.9)

unit vector on a characteristic surface normal to the
bicharacteristic direction

N .
r-component of N defined by egn. (2.18)

N , ]
fecomponent of N defined by eqn. (2.19)
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z=component of N defined by eqn. (2.20)

unit vector normal to the control surface
r-component of n defined by eqn. (2.2)
f-component of n defined by egn. (2.2)
z-component of n defined by eqn. (2.2)

pressure

anbient pressure

unit vector normal to the nozzle wall at the exit
r-component of P defined by eqn. (k.k)
f-component of T defined by eqn. (4.5)
z-component of P defined by eqn. (4.6)

(1
(1

gas constant

1-9) coefficients in eqn. (5.10)

1-5) coefficients in eqn. (5.9)

(1 = 1-3) derivatives defined by eqn. (2.72) = (2.74)
cobrdina.te of (r, §, z)=cylindrical coordinates

area of projected control surface on (r, )-plane
entropy

temperature

derivatives defined by eqns. (2.72) - (2.7h4)

axisl thrust

unit vector in tangent plane to nozzle boundary
mcomponent Of T defined by eqn. (L.7)

p-component of % defined by eqn. (4.8)

z=component of T defined by egn. (4.9)
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(i = 1~9) coefficients in eqn. (5.11)

magnitude of the velocity

velocity vector

r-component of V as defined by egn. (2.1)
p-component of V as defined by egn. (2.1)
z-component of V as defined by eqn. (2.1)
p-component of V as defined by eqne (4.10)
1l-component of V as defined by eqn. (4.11)
t-component of V as defined by eqn. (4.12)
independent variable

function defined by eqns. (3.9) and (3.10)
coordinate in rectangular (x, &, z)=-coordinates
coordinate in rectanguler (x, y, z)-coordinates
coordinate in (r, P, z)-cylindrical coordinate system

unit vector in z~direction

Greek Symbols

04

o D1 ™

>

il

angle pertially defining the direction of the unit normel
to the control surface, see Fig. 2.3

angle partially defining the direction of the unit normsl
to the control surface, s2e Fig. 2.3

boundary of a domain of integration
ratio of specific heat capacities
incremental change

variational operator

angle relating bicharacteristic direction to (r, @, z)-
cylindricael coorainates, see Fig. 2.7

variational parameter



[+>]

T >

a

L e ©=°

Subscripts
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angle partially defining the direction of the velocity
vector, see Fig. 2.2

Lagrange multiplier

Lagrange multiplier

Mech angle defined by eqn. (2.10)

angle defined by eqn. (2.37)

ratio of thé circumference to the dlameter of a circle
density

angular coordinate of (r, f, z)=-cylindrical coordinates

angle partially defining the direction of the velocity
vector, see Fig. 2.2

vorticity vector defined by eqn. (2.13)
—

r-component of W defined by egn. (2.1%)
—

f-component of (U defined by eqn. (2.15)

—
z~component of (V) defined by egn. (2.16)

smbient conditions

conditions at the exit plane

variable index

conditions in the kernel or on the boundary of the kernel
total conditions of thermodynamic verisbles

constant entropy
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partial derivative operator
differential operator

variational operator

partial derivative on the control surface in the direction
which holds N constant

partial derivative on the control surface in the direction
which holds L constant

pertial derivative in (r, §)-plene in the direction which
holds § constant

partial derivetive in (r, §)-plane in the direction which

" holds r constant

Del operator of vector calculus

vector




APPENDIX B
DERIVATION OF VARIATIONAL RELATIONSHIPS

The object of this Appendix is to derive the variationsl relation~
ships which are needed for the solution of the optimum thrust nozzle
design problem. An understanding of the basic concepts of variational
calculus is assumed.

Consider a function G defined over the domain A in the (r, $)-plane
11lustrated in Fige. B-l. G may be an explicit function of the two
independent variebles r and ﬁ, the p dependent varisbles wi(i=1,2,...p),

and the partial derivatives of w, denoted as R, and T, where

i i i
awi awi
(a) By =5 3 (b) T, =T (B-1)

To treat the variational problem,the variational parameter € is introduced.
The dependent varigbles of the system are considered as functions of €
so that
G = G(r, B, w,(e), Ry(¢), T,(€)) (-2)
In accordence with standard notation the first variation of wi(e) is

defined as

ov, = == de (8-3)
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FIGURE B-lI

DOMAIN OF INTEGRATION, A,
IN THE (r,¢) - PLANE
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Consider now the 1ntegral_I defined by the equation

1(e) = j'f a(r, Bywy(e), Ry(€), T,()) ar ag (k)
Ae)

where the area of integration, A, may be a function of the variational
parameter €. To determine the first variation of I, namely

_ar

81 = 52

de (B-5)

'€e=0

requires the application of two well known concepts from calculus.
The first is Liebnitz' rule for differentiation of an integral with
varisble limits and the second is integration by parts which for an
area Integral is equivalent to Stokes' Theorem. These two concepts

can be stated in equation form as follows:

Liebnitz' Rulegg-
If
b(e)
J(e) = S £(t, €) at (8-6)

a(e)
where a and b are differentiable functions of € and both f(t, €)

and 3f(t, €)/dt are continuous in both t and €, then

b(e)
aJ | iiégail at + £(b(e),e) Qgéil - £(a(e),e) Q%éil

a(e)
(B~7)

Stokes' Theorem: Stokes' Theorem in vector form iso-

ﬂvx?.a,.-.gs-f.a (5-6)
A r
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where the element dl is along the boundary F in a positive sense,
keeping the area A always on the left. In terms of polar coordinsates
r and P and the components offli'7 in the r and P directions (denoted as

F, and F¢) , eqn. (B-8) becomes

jAf [%; (er) - % (Fr)] dr ap = é) (-Fr r -?; + F¢ %) a1
r (8-9)
where T 1s the unit outvard noxmal to ' as 1llustrated in Fig. B-l.

Now eqn. (B-4) can be rewritten to include the limits of integration

as

r (¢)
I(e) = fj a(r, ¢, w,(e), R (e), T,(¢)) ar ap

s0 that Liebnitz' Rule can be applied to calculate 8I. Thus,

(B-10)

ar '
oL = Ge |, / (g}w'i's"i*'%iari*%&i)drd’b
2x
+ S G %re ae ag (B-11)
€=0
0 T,

where the standard sumation convention for repeated varisble indiciles

is employed. For example, the term

E— 3;l-aw +3§— &V, + 1! +§‘—- 5w, - (B-12)

avy vy oV, oW, P

In the terms B8R, and 3T,,the order of the variation 8 and the

partial derivative operations can be interchanged as follows:
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(=) b)
vy B(&wi) (

awi
Wy ) s oy = eag) - %5 (ov)  (8-13)
Therefore, the terms Involving S8R 4 and BT

4 in eqn. (B~11) can be expanded
to glve

o
L &R, % (8w ) - N (E—- awi) - 5w -8 (i-) -~ (B=14)

oR, T o oR, 1 or 'R,

and

8(8w )
isr .&. _%(E_ o) = &, _%(ﬁ_) (B-15)
oy oy

Equations (B~14) and (B~15) are substituted into egn. (B~1ll) which
can then be partially integrated using Stokes' Theorem in the form of

eqne (B~9) where

ow &w
(2) F_ =~ %; L am (b) 7y = ;LGR: - (3-16)
Thus,
sI = Sf E, 6w, ar af +§ (%%§+%§) gw, dl
A o
2 .
+ J G g{- de ap (B-17)
0 rrl €=0
where
eSS &) - &) (8-18)

is the well~known Euler-lLagrange equation of variational calculuse.
Notice that egn. (B~17) for the variation of I cen be separated
into two parts, namely a rart that arises for a fixed area A and a part

that 1s ascribed to the variation of the domain of A.




